Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/269456
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions

AutorBauer, Magnus Sebastian; Gruber, Sophia; Hausch, Adina; Gomes, Priscila S. F. C.; Milles, Lukas Frederik; Nicolaus, Thomas; Schendel, Leonard C.; López-Navajas, Pilar CSIC ; Procko, Erik; Lietha, Daniel CSIC ORCID ; Melo, Marcelo C. R.; Bernardi, Rafael C.; Gaub, Hermann Eduard; Lipfert, Jan
Palabras claveSARS-CoV-2
Host–pathogen interactions
Force spectroscopy
AFM
Magnetic tweezers
Fecha de publicación21-mar-2022
EditorNational Academy of Sciences (U.S.)
CitaciónProceedings of the National Academy of Sciences of the USA 119(14): e2114397119 (2022)
ResumenSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are initiated by attachment of the receptor-binding domain (RBD) on the viral Spike protein to angiotensin-converting enzyme-2 (ACE2) on human host cells. This critical first step occurs in dynamic environments, where external forces act on the binding partners and avidity effects play an important role, creating an urgent need for assays that can quantitate SARS-CoV-2 interactions with ACE2 under mechanical load. Here, we introduce a tethered ligand assay that comprises the RBD and the ACE2 ectodomain joined by a flexible peptide linker. Using magnetic tweezers and atomic force spectroscopy as highly complementary single-molecule force spectroscopy techniques, we investigate the RBD:ACE2 interaction over the whole physiologically relevant force range. We combine the experimental results with steered molecular dynamics simulations and observe and assign fully consistent unbinding and unfolding events across the three techniques, enabling us to establish ACE2 unfolding as a molecular fingerprint. Measuring at forces of 2 to 5 pN, we quantify the force dependence and kinetics of the RBD:ACE2 bond in equilibrium. We show that the SARS-CoV-2 RBD:ACE2 interaction has higher mechanical stability, larger binding free energy, and a lower dissociation rate compared to SARS-CoV-1, which helps to rationalize the different infection patterns of the two viruses. By studying how free ACE2 outcompetes tethered ACE2, we show that our assay is sensitive to prevention of bond formation by external binders. We expect our results to provide a way to investigate the roles of viral mutations and blocking agents for targeted pharmaceutical intervention.
Versión del editorhttps://doi.org/10.1073/pnas.2114397119
URIhttp://hdl.handle.net/10261/269456
DOI10.1073/pnas.2114397119
ISSN0027-8424
E-ISSN1091-6490
Aparece en las colecciones: (PTI Salud Global) Colección Especial COVID-19
(CIB) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
pnas.2114397119.pdf4,27 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

25
checked on 03-abr-2024

WEB OF SCIENCETM
Citations

22
checked on 23-feb-2024

Page view(s)

37
checked on 19-abr-2024

Download(s)

40
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons