English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/2656
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 28 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Radiative Transfer Simulations Using Mesoscale Cloud Model Outputs: Comparisons with Passive Microwave and Infrared Satellite Observations for Midlatitudes
Autor : Meirold-Mautner, Ingo; Prigent, Catherine; Defer, Eric; Pardo Carrión, Juan Ramón ; Chaboureau, Jean-Pierre; Pinty, Jean-Pierre; Mech, Mario; Crewell, Susanne
Palabras clave : Radiative Transfer
Mesoscale Weather Models
Meteorology
Midlatitudes
Satellite Observations
Microwave Scanning
Infrared Images
Fecha de publicación : may-2007
Editor: American Meteorological Society
Citación : Journal of the Atmospheric Sciences 64, 5 (2007): 1550-1568.
Resumen: Real midlatitude meteorological cases are simulated over western Europe with the cloud mesoscale model Méso-NH, and the outputs are used to calculate brightness temperatures at microwave frequencies with the Atmospheric Transmission at Microwave (ATM) radiative transfer model. Satellite-observed brightness temperatures (TBs) from the Advanced Microwave Scanning Unit B (AMSU-B) and the Special Sensor Microwave Imager (SSM/I) are compared to the simulated ones. In this paper, one specific situation is examined in detail. The infrared responses have also been calculated and compared to the Meteosat coincident observations. Overall agreement is obtained between the simulated and the observed brightness temperatures in the microwave and in the infrared. The large-scale dynamical structure of the cloud system is well captured by Méso-NH. However, in regions with large quantities of frozen hydrometeors, the comparison shows that the simulated microwave TBs are higher than the measured ones in the window channels at high frequencies, indicating that the calculation does not predict enough scattering. The factors responsible for the scattering (frozen particle distribution, calculation of particle dielectric properties, and nonsphericity of the particles) are analyzed. To assess the quality of the cloud and precipitation simulations by Méso-NH, the microphysical fields predicted by the German Lokal-Modell are also considered. Results show that in these midlatitude situations, the treatment of the snow category has a high impact on the simulated brightness temperatures. The snow scattering parameters are tuned to match the discrete dipole approximation calculations and to obtain a good agreement between simulations and observations even in the areas with significant frozen particles. Analysis of the other meteorological simulations confirms these results. Comparing simulations and observations in the microwave provides a powerful evaluation of resolved clouds in mesoscale models, especially the precipitating ice phase.
URI : http://hdl.handle.net/10261/2656
DOI: 10.1175/JAS3896.1
ISSN: 0022-4928
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.