Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/264274
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Carbon Incorporation in MOCVD of MoS2Thin Films Grown from an Organosulfide Precursor

AutorSchäfer, C.; Caicedo, José Manuel CSIC ORCID; Sauthier, Guillaume CSIC ORCID; Bousquet, Jessica CSIC; Hébert, Clement CSIC ORCID; Sperling, Justin R. CSIC ORCID; Pérez-Tomás, Amador CSIC ORCID; Santiso, José CSIC ORCID; Corro, Elena del CSIC ORCID; Garrido, Jose A. CSIC ORCID
Palabras claveThin films
Precursors
Pyrolysis
Chemical vapour deposition
X-ray photoelectron spectroscopy
Fecha de publicación24-mar-2021
EditorAmerican Chemical Society
CitaciónChemistry of Materials 33(12): 4474-4487 (2021)
ResumenWith the rise of two-dimensional (2D) transition-metal dichalcogenide (TMD) semiconductors and their prospective use in commercial (opto)electronic applications, it has become key to develop scalable and reliable TMD synthesis methods with well-monitored and controlled levels of impurities. While metal-organic chemical vapor deposition (MOCVD) has emerged as the method of choice for large-scale TMD fabrication, carbon (C) incorporation arising during MOCVD growth of TMDs has been a persistent concern-especially in instances where organic chalcogen precursors are desired as a less hazardous alternative to more toxic chalcogen hydrides. However, the underlying mechanisms of such unintentional C incorporation and the effects on film growth and properties are still elusive. Here, we report on the role of C-containing side products of organosulfur precursor pyrolysis in MoS2 thin films grown from molybdenum hexacarbonyl Mo(CO)6 and diethyl sulfide (CH3CH2)2S (DES). By combining in situ gas-phase monitoring with ex situ microscopy and spectroscopy analyses, we systematically investigate the effect of temperature and Mo(CO)6/DES/H2 gas mixture ratios on film morphology, chemical composition, and stoichiometry. Aiming at high-quality TMD growth that typically requires elevated growth temperatures and high DES/Mo(CO)6 precursor ratios, we observed that temperatures above DES pyrolysis onset (â 600 °C) and excessive DES flow result in the formation of nanographitic carbon, competing with MoS2 growth. We found that by introducing H2 gas to the process, DES pyrolysis is significantly hindered, which reduces carbon incorporation. The C content in the MoS2 films is shown to quench the MoS2 photoluminescence and influence the trion-To-exciton ratio via charge transfer. This finding is fundamental for understanding process-induced C impurity doping in MOCVD-grown 2D semiconductors and might have important implications for the functionality and performance of (opto)electronic devices.
Versión del editorhttp://doi.org/10.1021/acs.chemmater.1c00646
URIhttp://hdl.handle.net/10261/264274
DOI10.1021/acs.chemmater.1c00646
Identificadoresdoi: 10.1021/acs.chemmater.1c00646
issn: 1520-5002
Aparece en las colecciones: (CIN2) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

22
checked on 20-abr-2024

WEB OF SCIENCETM
Citations

20
checked on 25-feb-2024

Page view(s)

55
checked on 23-abr-2024

Download(s)

14
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.