Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/263703
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Strong strain gradients and phase coexistence at the metal-insulator transition in VO2 epitaxial films

AutorRodríguez, Laura CSIC ORCID; Sandiumenge, Felip CSIC ORCID; Frontera, Carlos CSIC ORCID; Caicedo, José Manuel CSIC ORCID; Padilla-Pantoja, Jessica CSIC ORCID; Catalán, Gustau CSIC ORCID; Santiso, José CSIC ORCID
Palabras claveLocal strain fields
Martensitic transitions
Metal-insulator transitions
Phase coexistence
Fecha de publicación1-nov-2021
EditorElsevier
CitaciónActa Materialia 220: 117336 (2021)
ResumenThe proximity of a thermodynamic triple point and the formation of transient metastable phases may result in complex phase and microstructural trajectories across the metal-insulator transition in strained VO2 films. A detailed analysis using in-situ synchrotron X-ray diffraction unveils subtle fingerprints of this complexity in the structure of epitaxial films. During phase transition the low-temperature monoclinic M1 phase is constrained along the {111}R planes by the coexisting high-temperature R phase domains, which remain epitaxially clamped to the substrate. This geometrical constraint induces counteracting local stresses that result in a combined tilt and uniaxial in-plane compression of M1 domains, and a concomitant anomalous cR-axis elongation. This mechanism progressively transforms the M1 phase into the transitional triclinic phase (T), and ultimately into the monoclinic M2 phase, generating strong strain and tilt gradients that remain frozen after the complete transformation of the R phase upon cooling to RT. The transformation path of VO2 films, the complex competition between stable and metastable VO2 polymorphs and its impact on the structure of the low temperature monoclinic state, provide essential insights for understanding the electronic and mechanical properties of the films at the nanoscale, as well as to control their use in functional devices.
Versión del editorhttp://dx.doi.org/10.1016/j.actamat.2021.117336
URIhttp://hdl.handle.net/10261/263703
DOI10.1016/j.actamat.2021.117336
ISSN1359-6454
Aparece en las colecciones: (ICMAB) Artículos
(CIN2) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Rodriguez_ActaMater_2021_editorial.pdfArtículo principal2,66 MBAdobe PDFVista previa
Visualizar/Abrir
Rodriguez_ActaMater_2021_suppl_editorial.pdfInformación complementaria1,96 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

11
checked on 16-abr-2024

WEB OF SCIENCETM
Citations

9
checked on 28-feb-2024

Page view(s)

54
checked on 23-abr-2024

Download(s)

108
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons