English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/2637
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

The Far‐Infrared Spectrum of Arp 220

AuthorsCernicharo, José ; Fischer, Jacqueline; Smith, Howard A.; González‐Alfonso, Eduardo
KeywordsGalaxies: abundances—galaxies: individual (Arp 220)
Galaxies: ISM
Galaxies: starburst
Infrared: galaxies
Radiative transfer
Issue Date18-Jun-2004
PublisherAmerican Astronomical Society
CitationThe Astrophysical Journal, 613:247–261, 2004 September 20
arXiv:astro-ph/0406427v1
AbstractISO/LWS grating observations of the ultraluminous infrared galaxy Arp 220 shows absorption in molecular lines of OH, H$_2$O, CH, NH, and NH$_3$, as well as in the [O I] 63 $\mu$m line and emission in the [C II] 158 $\mu$m line. We have modeled the continuum and the emission/absorption of all observed features by means of a non-local radiative transfer code. The continuum from 25 to 1300 $\mu$m is modeled as a warm (106 K) nuclear region that is optically thick in the far-infrared, attenuated by an extended region (size 2$''$) that is heated mainly through absorption of nuclear infrared radiation. The molecular absorption in the nuclear region is characterized by high excitation due to the high infrared radiation density. The OH column densities are high toward the nucleus and the extended region. The H$_2$O column density is also high toward the nucleus and lower in the extended region. The column densities in a halo are similar to what are found in the diffuse clouds toward Sgr B2 near the Galactic Center. Most notable are the high column densities found for NH and NH$_3$ toward the nucleus, with values of $\sim1.5\times10^{16}$ cm$^{-2}$ and $\sim3\times10^{16}$ cm$^{-2}$, respectively. A combination of PDRs in the extended region and hot cores with enhanced \hdo photodissociation and a possible shock contribution in the nuclei may explain the relative column densities of OH and \hdo, whereas the nitrogen chemistry may be strongly affected by cosmic ray ionization. The [C II] 158 $\mu$m line is well reproduced by our models and its ``deficit'' relative to the CII/FIR ratio in normal and starburst galaxies is suggested to be mainly a consequence of the dominant non-PDR component of far-infrared radiation, although our models alone cannot rule out extinction effects in the nuclei.
URIhttp://hdl.handle.net/10261/2637
DOI10.1086/422868
ISSN1538-4357
Appears in Collections:(CFMAC-IEM) Artículos
Files in This Item:
File Description SizeFormat 
27.pdf762,61 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.