English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/26134
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Testing Non-parametric Methods to Estimate Cod (Gadus morhua) Recruitment in NAFO Divisions 3NO

AutorPaz, J.; Larrañeta, M. G.
Palabras claveCod
Gadus morhua
NAFO Divisions 3NO
Non-parametric methods
Recruitment
Fecha de publicación1993
EditorNorthwest Atlantic Fisheries Organization
CitaciónScientific Council Studies 18: 27-31 (1993)
ResumenRecognizing that non-parametric methods to estimate fish stock recruitment are generally simple and they do not need to be based on ecological hypotheses, four non-parametric methods; the probability transition matrix and three algorithms to estimate recruitment probability density functions were tested on cod (Gadus morhua) data from NAFO Div. 3NO. The transition matrix method was inadequate because the cod stock failed to meet the primary Markovian assumption: the transition probability must be constant and depend only on the previous state. Of the three algorithm methods, the fixed-interval, the New England and the Cauchy, only the New England was appropriate for calculating recruitment with these stock data. A regression coefficient of r = 0.556 (d.f. = 23, P = 0.003) was obtained when the observed data were compared with the estimated. The validity of estimates of future recruitment using the New England algorithm depends on biotic and abiotic environmental conditions being similar in both the pre-recruit and the observation periods.
Descripción6 pages, 3 figures, 1 table.
Versión del editorhttp://www.nafo.int/publications/frames/science.html
URIhttp://hdl.handle.net/10261/26134
ISSN0250-6432
Aparece en las colecciones: (IIM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
paz2.pdf36,84 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.