Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/25929
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Title

Deeper understanding of non-linear geodetic data inversion using a quantitative sensitive analysis

AuthorsTiede, C.; Tiampo, Kristy F.; Fernández Torres, José CSIC ORCID ; Gerstenecker, C.
KeywordsGeodesy
Non-linear processes
Issue Date1-Mar-2005
PublisherEuropean Geosciences Union
CitationNonlinear Processes in Geophysics (2005) 12: 373–379
AbstractA quantitative global sensitivity analysis (SA) is applied to the non-linear inversion of gravity changes and displacement data which measured in an active volcanic area. The common inversion of this data is based on the solution of the generalized Navier equations which couples both types of observation, gravity and displacement, in a homogeneous half space. The sensitivity analysis has been carried out using Sobol’s variance-based approach which produces the total sensitivity indices (TSI), so that all interactions between the unknown input parameters are taken into account. Results of the SA show quite different sensitivities for the measured changes as they relate to the unknown parameters for the east, north and height component, as well as the pressure, radial and mass component of an elastic-gravitational source. The TSIs are implemented into the inversion in order to stabilize the computation of the unknown parameters, which showed wide dispersion ranges in earlier optimization approaches. Samples which were computed using a genetic algorithm (GA) optimization are compared to samples in which the results of the global sensitivity analysis are integrated by a reweighting of the cofactor matrix in the objective function. The comparison shows that the implementation of the TSI’s can decrease the dispersion rate of unknown input parameters, producing a great improvement the reliable determination of the unknown parameters.
Publisher version (URL)http://dx.doi.org/10.5194/npg-12-373-2005
URIhttp://hdl.handle.net/10261/25929
DOI10.5194/npg-12-373-2005
ISSN1607-7946
Appears in Collections:(IAG) Artículos

Files in This Item:
File Description SizeFormat
articulo8_2005.pdf268,01 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work

SCOPUSTM   
Citations

6
checked on Jan 18, 2022

WEB OF SCIENCETM
Citations

7
checked on Jan 21, 2022

Page view(s)

306
checked on Jan 21, 2022

Download(s)

158
checked on Jan 21, 2022

Google ScholarTM

Check

Altmetric

Dimensions


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.