English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/25823
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Multispectral classification of grass weeds and wheat (Triticum durum) using linear and nonparametric functional discriminant analysis and neural networks

AutorLópez Granados, Francisca ; Peña Barragán, José Manuel ; Jurado-Expósito, Montserrat ; Francisco-Fernández, Mario; Cao, Ricardo; Alonso-Betanzos, A.; Fontela-Romero, Óscar
Palabras clavePatch dynamics
Real-time
Site-specific weed management
Spectral signature
Remote sensing
Avena sterilis
Lolium rigidum
Phalaris brachystachys.
Fecha de publicaciónfeb-2008
EditorBlackwell Publishing
CitaciónWeed Research 48: 28-37 (2008)
ResumenField studies were conducted to determine the potential of multispectral classification of late-season grass weeds in wheat. Several classification techniques have been used to discriminate differences in reflectance between wheat and Avena sterilis, Phalaris brachystachys, Lolium rigidum and Polypogon monspeliensis in the 400–900 nm spectrum, and to evaluate the accuracy of performance for a spectral signature classification into the plant species or group to which it belongs. Fisher's linear discriminant analysis, nonparametric functional discriminant analysis and several neural networks have been applied, either with a preliminary principal component analysis (PCA) or not and in different scenarios. Fisher's linear discriminant analysis, feedforward neural networks and one-layer neural network, all showed classification percentages between 90% and 100% with PCA. Generally, a preliminary computation of the most relevant principal components considerably improves the correct classification percentage. These results are promising because A. sterilis and L. rigidum, two of the most problematic, clearly patchy and expensive-to-control weeds in wheat, could be successfully discriminated from wheat in the 400–900 nm range. Our results suggest that mapping grass weed patches in wheat could be feasible with analysis of real-time and high-resolution satellite imagery acquired in mid-May under these conditions.
Descripción10 pages, 4 tables
Versión del editorhttp://dx.doi.org/10.1111/j.1365-3180.2008.00598.x
URIhttp://hdl.handle.net/10261/25823
DOI10.1111/j.1365-3180.2008.00598.x
ISSN0043-1737 (Print)
1365-3180 (Online)
Aparece en las colecciones: (IAS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Digital CSIC.Nota.pdf153,65 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.