English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/25768
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Citado 0 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Faceting and coarsening dynamics in the complex Swift-Hohenberg equation

AutorGelens, Lendert ; Knobloch, Edgar
Fecha de publicación2009
EditorAmerican Physical Society
CitaciónPhysical review E 80: 046221 (2009)
ResumenThe complex Swift-Hohenberg equation models pattern formation arising from an oscillatory instability with a finite wave number at onset and finds applications in lasers, optical parametric oscillators, and photorefractive oscillators. We show that with real coefficients this equation exhibits two classes of localized states: localized in amplitude only or localized in both amplitude and phase. The latter are associated with phase-winding states in which the real and imaginary parts of the order parameter oscillate periodically but with a constant phase difference between them. The localized states take the form of defects connecting phase-winding states with equal and opposite phase lag, and can be stable over a wide range of parameters. The formation of these defects leads to faceting of states with initially spatially uniform phase. Depending on parameters these facets may either coarsen indefinitely, as described by a Cahn-Hilliard equation, or the coarsening ceases leading to a frozen faceted structure.
DescripciónPACS number(s): 05.45.-a, 47.54.-r, 47.55.D-
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
e046221.pdf956,54 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.