Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/255210
COMPARTIR / EXPORTAR:
logo OpenAIRE logo OpenAIRE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
logo citeas González, M.-C., Cejudo, F. J., Sahrawy, M., & Serrato, A. J. (2021, November 9). Current Knowledge on Mechanisms Preventing Photosynthesis Redox Imbalance in Plants. Antioxidants. MDPI AG. http://doi.org/10.3390/antiox10111789
Invitar a revisión por pares abierta logo European Open Science Cloud - EU Node   

Título

Current Knowledge on Mechanisms Preventing Photosynthesis Redox Imbalance in Plants

AutorGonzález, Maricruz CSIC ORCID ; Cejudo, Francisco Javier CSIC ORCID; Sahrawy, Mariam CSIC ORCID ; Serrato, Antonio Jesús CSIC ORCID
FinanciadoresMinisterio de Ciencia, Innovación y Universidades (España)
Palabras claveThioredoxins (TRX)
Photosynthesis
Redox
NADPH thioredoxin reductase C (NTRC)
Non-photochemical quenching
Cyclic electron flow (CEF)
Ferredoxin/PGR5/PGRL1-dependent plastoquinone reductase (PGR5/PGRL1)
NADH dehydrogenase-like complex (NDH)
Fecha de publicación2021
EditorMultidisciplinary Digital Publishing Institute
CitaciónAntioxidants, 10: 1789 (2021)
ResumenPhotosynthesis includes a set of redox reactions that are the source of reducing power and energy for the assimilation of inorganic carbon, nitrogen and sulphur, thus generating organic compounds, and oxygen, which supports life on Earth. As sessile organisms, plants have to face continuous changes in environmental conditions and need to adjust the photosynthetic electron transport to prevent the accumulation of damaging oxygen by-products. The balance between photosynthetic cyclic and linear electron flows allows for the maintenance of a proper NADPH/ATP ratio that is adapted to the plant’s needs. In addition, different mechanisms to dissipate excess energy operate in plants to protect and optimise photosynthesis under adverse conditions. Recent reports show an important role of redox-based dithiol–disulphide interchanges, mediated both by classical and atypical chloroplast thioredoxins (TRXs), in the control of these photoprotective mechanisms. Moreover, membrane-anchored TRX-like proteins, such as HCF164, which transfer electrons from stromal TRXs to the thylakoid lumen, play a key role in the regulation of lumenal targets depending on the stromal redox poise. Interestingly, not all photoprotective players were reported to be under the control of TRXs. In this review, we discuss recent findings regarding the mechanisms that allow an appropriate electron flux to avoid the detrimental consequences of photosynthesis redox imbalances
Versión del editorhttps://doi.org/10.3390/antiox10111789
URIhttp://hdl.handle.net/10261/255210
DOI10.3390/antiox10111789
Licencia de usohttps://creativecommons.org/licenses/by/4.0/
Aparece en las colecciones: (IBVF) Artículos
(EEZ) Artículos



Ficheros en este ítem:
Fichero Descripción Tamaño Formato
antioxidants-10-01789.pdf1,51 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

11
checked on 18-nov-2024

WEB OF SCIENCETM
Citations

8
checked on 23-feb-2024

Page view(s)

103
checked on 08-jul-2025

Download(s)

89
checked on 08-jul-2025

Google ScholarTM

Check

Altmetric

Altmetric



Este item está licenciado bajo una Licencia Creative Commons Creative Commons