English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/2550
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : On the geometry of moduli spaces of coherent systems on algebraic curves
Autor : Bradlow, Steven B.; García Prada, Oscar; Mercat, V.; Newstead, P. E.
Palabras clave : Algebraic curves
Moduli of vector bundles
Coherent systems
Brill-Noether loci
Fecha de publicación : 2-ago-2006
Citación : arXiv:math/0407523v5
Resumen: Let C be an algebraic curve of genus g ≥ 2. A coherent system on C consists of a pair (E,V), where E is an algebraic vector bundle over C of rank n and degree d and V is a subspace of dimension k of the space of sections of E. The stability of the coherent system depends on a parameter α. We study the geometry of the moduli space of coherent systems for different values of α when k ≤ n and the variation of the moduli spaces when we vary α. As a consequence, for sufficiently large α, we compute the Picard groups and the first and second homotopy groups of the moduli spaces of coherent systems in almost all cases, describe the moduli space for the case k = n − 1 explicitly, and give the Poincaré polynomials for the case k = n − 2. In an appendix, we describe the geometry of the “flips” which take place at critical values of α in the simplest case, and include a proof of the existence of universal families of coherent systems when GCD(n, d, k) = 1.
Descripción : 38 pages. Nr. 5 is final version (02/08/2006), one typo was corrected and one reference deleted. Version nr. 4 (12/06/2006) included minor corrections and two added references. Version nr. 3 (23/06/2005) had appendix and new references added.
URI : http://hdl.handle.net/10261/2550
Aparece en las colecciones: (ICMAT) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Curves.pdf654,71 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.