English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/2525
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Skinner-Rusk Unified Formalism for Optimal Control Systems and Applications
Autor : Barbero-Liñán, María; Echeverría-Enríquez, Arturo; Martín de Diego, David; Muñoz-Lecanda, Miguel C.; Roman-Roy, Narciso
Palabras clave : Lagrangian and Hamiltonian formalisms
Jet bundles
Implicit optimal control
Descriptor systems
Fecha de publicación : 18-oct-2007
Citación : arXiv:0705.2178v2
Resumen: A geometric approach to time-dependent optimal control problems is proposed. This formulation is based on the Skinner and Rusk formalism for Lagrangian and Hamiltonian systems. The corresponding unified formalism developed for optimal control systems allows us to formulate geometrically the necessary conditions given by Pontryagin's Maximum Principle, providing that the differentiability with respect to controls is assumed and the space of controls is open. Furthermore, our method is also valid for implicit optimal control systems and, in particular, for the so-called descriptor systems (optimal control problems including both differential and algebraic equations).
Descripción : Published in: Journal of Physics A: Mathematical and Theoretical, 40 (2007) 12071–12093 (Institute of Physics, ISSN 1751-8121)
URI : http://hdl.handle.net/10261/2525
Aparece en las colecciones: (ICMAT) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Skinner.pdf437,8 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.