English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/2519
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces
Autor : Bradlow, Steven B.; García Prada, Oscar; Gothen, Peter B.
Fecha de publicación : 27-nov-2006
Citación : arXiv:math/0511415v3
Resumen: Higgs bundles and non-abelian Hodge theory provide holomorphic methods with which to study the moduli spaces of surface group representations in a reductive Lie group G. In this paper we survey the case in which G is the isometry group of a classical Hermitian symmetric space of non-compact type. Using Morse theory on the moduli spaces of Higgs bundles, we compute the number of connected components of the moduli space of representations with maximal Toledo invariant.
Descripción : Version nr. 2 of the paper (2005/12/07) contains added due credits to the work of Burger, Iozzi and Wienhard. [Present] Version nr. 3 includes corrected count of connected components for G=SU(p,q) (p \neq q), added due credits to the work of Xia and Markman-Xia and minor corrections and clarifications.
URI : http://hdl.handle.net/10261/2519
Aparece en las colecciones: (ICMAT) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Maximal.pdf384,52 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.