English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/2495
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
 |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : On the geometry of moduli spaces of holomorphic chains over compact Riemann surfaces
Autor : Alvarez-Cónsul, Luis; García Prada, Oscar; Schmitt, Alexander H.W.
Palabras clave : Holomorphic chains
Higgs bundles
Moduli spaces
Fecha de publicación : 21-dic-2005
Citación : arXiv:math/0512498
International Mathematics Research Papers, Volume 2006 (2006), Article ID 73597
Resumen: We study holomorphic $(n+1)$-chains $E_n\to E_{n-1} \to >... \to E_0$ consisting of holomorphic vector bundles over a compact Riemann surface and homomorphisms between them. A notion of stability depending on $n$ real parameters was introduced in the work of the first two authors and moduli spaces were constructed by the third one. In this paper we study the variation of the moduli spaces with respect to the stability parameters. In particular we characterize a parameter region where the moduli spaces are birationally equivalent. A detailed study is given for the case of 3-chains, generalizing that of 2-chains (triples) in the work of Bradlow, Garcia-Prada and Gothen. Our work is motivated by the study of the topology of moduli spaces of Higgs bundles and their relation to representations of the fundamental group of the surface.
URI : http://hdl.handle.net/10261/2495
DOI: 10.1155/IMRP/2006/73597
Aparece en las colecciones: (ICMAT) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Alvarez-Consul.pdf729,24 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.