English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/24846
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Predicting beef cut composition and meat quality traits by spiral computed tomography

AutorPrieto, Nuria ; Navajas, E. A.; Richardson, R. I.; Ross, D. W.; Hyslop, J. J.; Simm, G.; Roehe, R.
Fecha de publicación2010
EditorBritish Society of Animal Science
CitaciónProceedings of the British Society of animal Science or the Agricultural Research Forum, p. 284 (2010)
ResumenCarcass composition and meat traits are relevant for the definition of beef quality. Direct assessments of both groups of traits require the slaughter of the animal and are costly and time-consuming, which has limited the inclusion of quality traits in breeding programmes. X-ray computed tomography (CT) is a non-invasive technique that provides accurate predictions of beef carcass composition (Navajas et al., 2009). Studies in sheep showed that average CT muscle density is correlated with intramuscular fat content, fatty acid profile and eating quality (Bishop and Karamichou, 2009). The aim of this study was to assess the potential of CT tissue density values, analysed using a multivariate approach, as predictors of beef cut composition and meat quality in Aberdeen Angus and Limousin crossbred cattle.
Descripción1 page, 1 table.-- Contributed to: Proceedings of the British Society of Animal Science or the Agricultural Research Forum (Belfast, UK, 12-14 April, 2010).
Versión del editorhttp://www.bsas.org.uk/downloads/annlproc/pdf2010/pdf2010.pdf
URIhttp://hdl.handle.net/10261/24846
ISBN978-0-906562-67-3
ISSN2040-4700
Aparece en las colecciones: (IGM) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
1. Prieto_CT.pdf36,15 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.