Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/24823
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Title

Using binaries containing giants to constrain theories of stellar and tidal evolution

AuthorsClaret dos Santos, Antonio CSIC ORCID
Keywordsstars: binaries: general
stars: evolution
stars: rotation
Issue DateNov-2009
PublisherEDP Sciences
CitationAstronomy and Astrophysics, 507, 377-384, 2009
AbstractInvestigations of stellar and tidal evolution of binary stars with giant components are rare. In this paper, we will investigate such features in three binary systems for which at least one component is a giant star. As some of these giants seem to be in the blue loop, it is an excellent opportunity to investigate the sensitivity of core overshooting on their location in the HR Diagram. We expect that these characteristics shall serve as an incentive to observers to investigate such kinds of binaries, increasing the accuracy of measurements and the number of systems to test the evolutionary models. Methods. Prior to performing the study of the circularization and synchronization levels, an analysis of the capability of our stellar evolutionary models to reproduce the observed masses, radii and effective temperatures is carried out. Next, the differential equations of tidal evolution are integrated and the corresponding critical times are compared with the inferred age of the system and with the observed eccentricity and rotational velocities (when available). Results. We have found good agreement between our stellar models and the astrophysical properties of eta And, V2291 Oph and SZ Cen by adopting a moderate core overshooting amount (alpha(ov) = 0.20). Three mechanisms were used to try to explain the observed levels of circularization and synchronization: the hydrodynamical mechanism, turbulent dissipation and radiative damping. In the cases of eta And and SZ Cen, for which the rotational velocities are available, by assuming solid body rotation for both stars of each system we have found that the theoretical ratio between the rotational velocities V-rotA/V-rotB at the inferred ages are in good agreement with the observational ratios.
Publisher version (URL)http://dx.doi.org/10.1051/0004-6361/200911900
URIhttp://hdl.handle.net/10261/24823
DOI10.1051/0004-6361/200911900
ISSN0004-6361
Appears in Collections:(IAA) Artículos

Show full item record
Review this work

SCOPUSTM   
Citations

3
checked on May 21, 2022

WEB OF SCIENCETM
Citations

2
checked on May 17, 2022

Page view(s)

329
checked on May 22, 2022

Download(s)

268
checked on May 22, 2022

Google ScholarTM

Check

Altmetric

Dimensions


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.