English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/24814
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorDohán, Orsolya-
dc.contributor.authorVieja, Antonio de la-
dc.contributor.authorCarrasco, Nancy-
dc.date.accessioned2010-05-28T10:11:37Z-
dc.date.available2010-05-28T10:11:37Z-
dc.date.issued2006-05-
dc.identifier.citationMolecular Endocrinology 20(5): 1121-1137 (2006)en_US
dc.identifier.issn0888-8809-
dc.identifier.urihttp://hdl.handle.net/10261/24814-
dc.description18 pages, 6 figures.en_US
dc.description.abstractThe sodium/iodide symporter (NIS) mediates a remarkably effective targeted radioiodide therapy in thyroid cancer; this approach is an emerging candidate for treating other cancers that express NIS, whether endogenously or by exogenous gene transfer. Thus far, the only extrathyroidal malignancy known to express functional NIS endogenously is breast cancer. Therapeutic efficacy in thyroid cancer requires that radioiodide uptake be maximized in tumor cells by manipulating well-known regulatory factors of NIS expression in thyroid cells, such as TSH, which stimulates NIS expression via cAMP. Similarly, therapeutic efficacy in breast cancer will likely depend on manipulating NIS regulation in mammary cells, which differs from that in the thyroid. Human breast adenocarcinoma MCF-7 cells modestly express endogenous NIS when treated with all-trans-retinoic acid (tRa). We report here that hydrocortisone and ATP each markedly stimulates tRa-induced NIS protein expression and plasma membrane targeting in MCF-7 cells, leading to at least a 100% increase in iodide uptake. Surprisingly, the adenyl cyclase activator forskolin, which promotes NIS expression in thyroid cells, markedly decreases tRa-induced NIS protein expression in MCF-7 cells. Isobutylmethylxanthine increases tRa-induced NIS expression in MCF-7 cells, probably through a purinergic signaling system independent of isobutylmethylxanthine’s action as a phosphodiesterase inhibitor. We also observed that neither iodide, which at high concentrations down-regulates NIS in the thyroid, nor cAMP has a significant effect on NIS expression in MCF-7 cells. Our findings may open new strategies for breast-selective pharmacological modulation of functional NIS expression, thus improving the feasibility of using radioiodide to effectively treat breast cancer.en_US
dc.description.sponsorshipThis work was supported by National Institutes of Health Grant CA098390 (to N.C.). O.D. was supported, in part, by a postdoctoral award from the Department of Defense (DAMD17-0010127).en_US
dc.format.extent1869287 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoengen_US
dc.publisherEndocrine Societyen_US
dc.rightsopenAccessen_US
dc.titleHydrocortisone and Purinergic Signaling Stimulate Sodium/Iodide Symporter (NIS)-Mediated Iodide Transport in Breast Cancer Cellsen_US
dc.typeartículoen_US
dc.identifier.doi10.1210/me.2005-0376-
dc.description.peerreviewedPeer revieweden_US
dc.relation.publisherversionhttp://dx.doi.org/10.1210/me.2005-0376en_US
Appears in Collections:(IIBM) Artículos
Files in This Item:
File Description SizeFormat 
1121.pdf1,83 MBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.