Please use this identifier to cite or link to this item:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

On the global solvability of the fixed gravimetric boundary value problem

AuthorsOtero Juez, Jesús
Issue Date1989
PublisherCSIC-UCM - Instituto de Astronomía y Geodesia (IAG)
CitationPublicación. Instituto de Astronomía y Geodesia. 1989, nº 171 : p. 1-14.
SeriesPublicación. Instituto de Astronomía y Geodesia
AbstractWe consider the so called fixed gravimetric boundary value problem (Backus probleml, where from the knowledge of the modulus of the gravity vector on the known physical surface of the Earth we want to find the Earth's outer potential. This is a nonlinear oblique boundary value problem for a linear elliptic equation (Laplace's equationl, and nowdays the general theory of such problems is not as developed as for the linear case. In this paper, we propose a possible existence program for the fixed gravimetric boundary value problem based on the establishment of a priori estimates in a Holder space. Under certain hypothesis and simplifications, we obtain maximun modulus and gradient bounds for the solutions of this boundary value problem.
DescriptionTrabajo presentado en el "II Hotine-Marussi Symposium on Mathematical Geodesy", (Pisa, Italia, 5-8 de junio de 1989).
Appears in Collections:(IAG) Comunicaciones congresos

Files in This Item:
File Description SizeFormat
N171_1989_1.pdf3,12 MBAdobe PDFThumbnail
Show full item record
Review this work

Page view(s)

checked on May 17, 2022


checked on May 17, 2022

Google ScholarTM


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.