Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/247394
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invite to open peer review
DC FieldValueLanguage
dc.contributor.authorRaposo Bejines, Franciscoes_ES
dc.contributor.authorBarceló, Damiàes_ES
dc.date.accessioned2021-08-06T07:20:46Z-
dc.date.available2021-08-06T07:20:46Z-
dc.date.issued2021-10-
dc.identifier.citationTRAC - Trends in Analytical Chemistry 143: 116373 (2021)es_ES
dc.identifier.urihttp://hdl.handle.net/10261/247394-
dc.description.abstractThis critical review paper will discuss the main analytical calibration models as well as the guidelines for their practical use. The main models used to fit a multiple-point calibration dataset are: 1) linear unweighted or ordinary least squares regression (OLSR); 2) quadratic unweighted least squares regression (QLSR); 3) linear weighted least squares regression (WLSR). Unfortunately, there is no standard procedure in analytical chemistry for objectively testing the goodness-of-fit of calibration models. Different proposals were reported in the literature. However, none is more commonly used, and probably not more controversial than R2. In this document, a three step simple calibration diagnosis has been proposed. It is based on a combination of different procedures such as graphical plots, statistical significance tests and numerical parameters. Experimental conditions and design of calibration procedures are very relevant for appropriate selection. Finally, some information on the choice of the different models will be reported in four case studies.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.isversionofPostprintes_ES
dc.rightsopenAccessen_EN
dc.subjectBack-calculated concentrationes_ES
dc.subjectCalibrationes_ES
dc.subjectDetermination coefficientes_ES
dc.subjectGoodness-of-fites_ES
dc.subjectLeast squares regressiones_ES
dc.subjectLinear regressiones_ES
dc.subjectQuadratic regressiones_ES
dc.subjectRelative errores_ES
dc.subjectWeighted regressiones_ES
dc.titleAssessment of goodness-of-fit for the main analytical calibration models: Guidelines and case studieses_ES
dc.typeartículoes_ES
dc.identifier.doi10.1016/j.trac.2021.116373-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.trac.2021.116373es_ES
dc.embargo.terms2023-10-01es_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.contributor.orcidBarceló, Damià [0000-0002-8873-0491]es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeartículo-
item.languageiso639-1en-
item.grantfulltextopen-
Appears in Collections:(IDAEA) Artículos
Files in This Item:
File Description SizeFormat
Rasposo TRAC 2021.pdfArtículo principal991,69 kBAdobe PDFThumbnail
View/Open
1-s2.0-S0165993621001965-mmc1.docxMaterial suplementario15,73 kBMicrosoft Word XMLView/Open
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

9
checked on Apr 6, 2024

WEB OF SCIENCETM
Citations

8
checked on Feb 25, 2024

Page view(s)

145
checked on Apr 18, 2024

Download(s)

52
checked on Apr 18, 2024

Google ScholarTM

Check

Altmetric

Altmetric


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.