Please use this identifier to cite or link to this item:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Regulation of promoter occupancy during activation of cryptobiotic embryos from the crustacean Artemia franciscana

AuthorsMartinez-Lamparero, Ana; Casero, Marie-Carmen; Ortiz-Caro, Javier; Sastre, Leandro CSIC ORCID
Artemia franciscana
Gene expression
Issue DateMay-2003
PublisherCompany of Biologists
CitationJournal of Experimental Biology 206(9): 1565-1573 (2003)
AbstractArtemia franciscana embryos can suspend their development and metabolism at the gastrula stage to enter a state of cryptobiosis, forming cysts. Embryonic development and metabolism can be resumed under favorable environmental conditions to give rise to free-swimming larvae or nauplii. The mechanisms that mediate these processes are not completely known. Here, we report our studies of the mechanisms that regulate transcriptional activation upon exiting cryptobiosis. Regulatory regions of several A. franciscana gene promoters were identified. Functional analyses in mammalian cells allowed the identification of transcriptional activator regions in the Actin302 promoter and in promoter 2 of the sarco/endoplasmic reticulum Ca2+-ATPase-encoding gene. These regions were shown to specifically bind protein factors from nuclear extracts of A. franciscana nauplii by means of electrophoretic mobility shift assays. Several protein-binding regions were also detected by DNase I protection analysis in the promoters of the genes encoding the {alpha}1 subunit of Na+/K+-ATPase, actin 302 and sarco/endoplasmic reticulum Ca2+-ATPase. Specific DNA-binding proteins in nauplius nuclear extracts were detected for all the promoter regions analyzed. These proteins were either not present in cyst nuclear extracts or were present in much smaller concentrations. Three of the five regions analyzed also bound proteins present in cyst nuclear extracts. These data indicate that transcriptional activation upon exiting cryptobiosis in A. franciscana involves the expression/activation of DNA-binding transcription factors that are not present in cyst nuclei.
Description9 pages, 7 figures.
Publisher version (URL)
Appears in Collections:(IIBM) Artículos

Files in This Item:
File Description SizeFormat
Regulation of promoter.pdf192,46 kBAdobe PDFThumbnail
Show full item record
Review this work

Page view(s)

checked on May 21, 2022


checked on May 21, 2022

Google ScholarTM


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.