Please use this identifier to cite or link to this item:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism

AuthorsVincent, Olivier CSIC ORCID ; Carlson, Marian
KeywordsSnf1/AMPK kinases
Nuclear localization
Glucose signaling
Issue Date1-May-2001
PublisherCold Spring Harbor Laboratory Press
CitationGenes and Development 15(9): 1104-1114 (2001)
AbstractThe Snf1/AMP-activated protein kinase family has broad roles in transcriptional, metabolic, and developmental regulation in response to stress. In Saccharomyces cerevisiae, Snf1 is required for the response to glucose limitation. Snf1 kinase complexes contain the alpha (catalytic) subunit Snf1, one of the three related beta subunits Gal83, Sip1, or Sip2, and the gamma subunit Snf4. We present evidence that the beta subunits regulate the subcellular localization of the Snf1 kinase. Green fluorescent protein fusions to Gal83, Sip1, and Sip2 show different patterns of localization to the nucleus, vacuole, and/or cytoplasm. We show that Gal83 directs Snf1 to the nucleus in a glucose-regulated manner. We further identify a novel signaling pathway that controls this nuclear localization in response to glucose phosphorylation. This pathway is distinct from the glucose signaling pathway that inhibits Snf1 kinase activity and responds not only to glucose but also to galactose and sucrose. Such independent regulation of the localization and the activity of the Snf1 kinase, combined with the distinct localization of kinases containing different beta subunits, affords versatility in regulating physiological responses.
Description12 pages, 8 figures, 1 table.-- et al.
Publisher version (URL)
Appears in Collections:(IIBM) Artículos

Files in This Item:
File Description SizeFormat
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Page view(s)

checked on May 21, 2022


checked on May 21, 2022

Google ScholarTM


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.