English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/24268
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 9 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Search for the Higgs Boson Using Neural Networks in Events with Missing Energy and b-Quark Jets in p(p)over-bar Collisions at root s=1.96 TeV

AutorCDF Collaboration; Cabrera, Susana ; Cuenca Almenar, Cristóbal ; Álvarez González, B.; Casal, Bruno ; Cuevas, Javier ; Gómez, G. ; Rodrigo, Teresa ; Ruiz Jimeno, Alberto ; Scodellaro, Luca ; Vila, Iván ; Vilar, Rocío ; Aaltonen, T.
Fecha de publicación9-abr-2010
EditorAmerican Physical Society
CitaciónPhysical Review Letters 104 (14): 141801 (2010)
ResumenWe report on a search for the standard model Higgs boson produced in association with a W or Z boson in p (p) over bar collisions at root s = 1.96 TeV recorded by the CDF II experiment at the Tevatron in a data sample corresponding to an integrated luminosity of 2.1 fb(-1). We consider events which have no identified charged leptons, an imbalance in transverse momentum, and two or three jets where at least one jet is consistent with originating from the decay of a b hadron. We find good agreement between data and background predictions. We place 95% confidence level upper limits on the production cross section for several Higgs boson masses ranging from 110 GeV/c(2) to 150 GeV/c(2). For a mass of 115 GeV/c(2) the observed (expected) limit is 6.9 (5.6) times the standard model prediction.
Versión del editorhttp://dx.doi.org/10.1103/PhysRevLett.104.141801
URIhttp://hdl.handle.net/10261/24268
DOI10.1103/PhysRevLett.104.141801
ISSN0031-9007
Aparece en las colecciones: (IFIC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Neural Networks CDF.pdf456,13 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.