English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/24230
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 22 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Analysis of the Friction Term in the One-Dimensional Shallow-Water Model

AutorBurguete Tolosa, Javier ; García-Navarro, Pilar
Palabras claveShallow water
Open channel flow
Flow resistance
Roughness
Numerical models
Fecha de publicaciónsep-2007
EditorAmerican Society of Civil Engineers
CitaciónJournal of Hydraulic Engineering 133 (9): 1048-1063 (September 2007)
ResumenThe numerical simulation of unsteady open channel flows is very commonly performed using the one-dimensional shallow-water model. Friction is one of the relevant forces included in the momentum equation. In this work, a generalization of the Gauckler-Manning friction model is proposed to improve the modeling approach in cases of dominant roughness, unsteady flow, and distorted cross-sectional shapes. The numerical stability conditions are revisited in cases of dominant friction terms and a new condition, complementary to the basic Courant-Friedrichs-Lewy condition, is proposed. Some test cases with measured data are used to validate the quality of the approaches.
Descripción52 Pag., 22 Fig. The definitive version is available at: http://cedb.asce.org/
Versión del editorhttp://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:9(1048)
URIhttp://hdl.handle.net/10261/24230
DOI10.1061/(ASCE)0733-9429(2007)133:9(1048)
ISSN1084-0699 (Print)
1943-5584 (Online)
Aparece en las colecciones: (EEAD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
BurgueteJ_JHydrEng_2007.pdf600,11 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.