English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/235602
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Topologically nontrivial phase-change compound GeSb2Te4

AuthorsNurmamat, Munisa; Okamoto, K.; Zhu, Siyuan; Menshchikova, Tatiana V.; Rusinov, Igor P.; Korostelev, Vladislav O.; Miyamoto, Koji; Okuda, Taichi; Miyashita, Takeo; Wang, Xiaoxiao; Ishida, Yukiaki; Sumida, Kazuki; Schwier, E. F.; Ye, M.; Aliev, Ziya S.; Babanly, M. B.; Amiraslanov, I. R.; Chulkov, Eugene V. CSIC ORCID; Kokh, Konstantin A.; Tereshchenko, Oleg E.; Shimada, K.; Shin, Shik; Kimura, A.
Issue Date2020
PublisherACS Publications
CitationACS Nano 14(7): 9059–9065 (2020)
AbstractChalcogenide phase-change materials show strikingly contrasting optical and electrical properties, which has led to their extensive implementation in various memory devices. By performing spin-, time-, and angle-resolved photoemission spectroscopy combined with the first-principles calculation, we report the experimental results that the crystalline phase of GeSb2Te4 is topologically nontrivial in the vicinity of the Dirac semimetal phase. The resulting linearly dispersive bulk Dirac-like bands that cross the Fermi level and are thus responsible for conductivity in the stable crystalline phase of GeSb2Te4 can be viewed as a 3D analogue of graphene. Our finding provides us with the possibility of realizing inertia-free Dirac currents in phase-change materials.
Publisher version (URL)https://doi.org/10.1021/acsnano.0c04145
Appears in Collections:(CFM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf59,24 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.