English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/230245
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

MEMOTE for standardized genome-scale metabolic model testing

AuthorsLieven, Christian; Beber, Moritz E.; Olivier, Brett G.; Bergmann, Frank T.; Ataman, Meric; Babaei, Parizad; Bartell, Jennifer A.; Blank, Lars M.; Chauhan, Siddharth; Correia, Kevin; Diener, Christian; Dräger, Andreas; Ebert, Birgitta E.; Edirisinghe, Janaka N.; Faria, José P.; Feist, Adam M.; Fengos, Georgios; Fleming, Ronan M. T.; García-Jiménez, Beatriz; Hatzimanikatis, Vassily; Van Helvoirt, Wout; Henry, Christopher S.; Hermjakob, Henning; Herrgård, Markus J.; Kaafarani, Ali; Kim, Hyun Uk; King, Zachary; Klamt, Steffen; Klipp, Edda; Koehorst, Jasper J.; König, Matthias; Lakshmanan, Meiyappan; Lee, Dong-Yup; Lee, Sang Yup; Lee, Sunjae; Lewis, Nathan E.; Liu, Filipe; Ma, Hongwu; Machado, Daniel; Mahadevan, Radhakrishnan; Maia, Paulo; Mardinoglu, Adil; Medlock, Gregory L.; Monk, Jonathan M.; Nielsen, Jens; Nielsen, Lars Keld; Nogales, Juan CSIC ORCID ; Nookaew, Intawat; Palsson, Bernhard O.; Papin, Jason A.; Patil, Kiran R.; Poolman, Mark; Price, Nathan D.; Resendis-Antonio, Osbaldo; Richelle, Anne; Rocha, Isabel; Sánchez, Benjamín J.; Schaap, Peter J.; Malik Sheriff, Rahuman S.; Shoaie, Saeed; Sonnenschein, Nikolaus; Teusink, Bas; Vilaça, Paulo; Vik, Jon Olav; Wodke, Judith A. H.; Xavier, Joana C.; Yuan, Qianqian; Zakhartsev, Maksim; Zhang, Cheng
KeywordsBiochemical networks
Computational models
Software
Issue DateMar-2020
PublisherSpringer Nature
CitationNature Biotechnology 38: 272-276 (2020)
AbstractReconstructing metabolic reaction networks enables the development of testable hypotheses of an organism’s metabolism under different conditions1. State-of-the-art genome-scale metabolic models (GEMs) can include thousands of metabolites and reactions that are assigned to subcellular locations. Gene–protein–reaction (GPR) rules and annotations using database information can add meta-information to GEMs. GEMs with metadata can be built using standard reconstruction protocols2, and guidelines have been put in place for tracking provenance and enabling interoperability, but a standardized means of quality control for GEMs is lacking3. Here we report a community effort to develop a test suite named MEMOTE (for metabolic model tests) to assess GEM quality.
Publisher version (URL)http://dx.doi.org/10.1038/s41587-020-0446-y
URIhttp://hdl.handle.net/10261/230245
DOIhttp://dx.doi.org/10.1038/s41587-020-0446-y
ISSN1087-0156
E-ISSN1546-1696
Appears in Collections:(CNB) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.