Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/230158
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invite to open peer review
Title

Poisson structure on the moduli spaces of sheaves of pure dimension one on a surface

AuthorsBiswas, Indranil; Gomez, Tomas L. CSIC ORCID
Issue Date2020
PublisherKluwer Academic Publishers
CitationGeometriae Dedicata 207: 157- 165 (2020)
AbstractLet S be a smooth complex projective surface equipped with a Poisson structure s and also a polarization H. The moduli space M(S, P) of stable sheaves on S having a fixed Hilbert polynomial P of degree one has a natural Poisson structure given by s, Tyurin (Math USSR Izvest 33:139–177, 1989), Bottacin (Invent Math 121:421–436, 1995). We prove that the symplectic leaves of M(S, P) are the fibers of the natural map from it to the symmetric power of the effective divisor on S given by the singular locus of s.
Publisher version (URL)http://dx.doi.org/10.1007/s10711-019-00490-w
URIhttp://hdl.handle.net/10261/230158
DOI10.1007/s10711-019-00490-w
Identifiersdoi: 10.1007/s10711-019-00490-w
issn: 1572-9168
Appears in Collections:(ICMAT) Artículos




Files in This Item:
File Description SizeFormat
POISSON ESTRUCTURE - PREPRINT.pdf265,76 kBAdobe PDFThumbnail
View/Open
Show full item record

CORE Recommender

Page view(s)

58
checked on Apr 21, 2024

Download(s)

101
checked on Apr 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.