English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/230099
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Temperature reduces fish dispersal as larvae grow faster to their settlement size

AuthorsRaventós, Núria CSIC ORCID; Torrado, Héctor ORCID; Arthur, Rohan CSIC ORCID ; Alcoverro, Teresa CSIC ORCID ; Macpherson, Enrique CSIC ORCID
KeywordsTemperature gradients
Climate change
Early life traits
Pelagic larval duration
Issue Date2021
PublisherJohn Wiley & Sons
CitationJournal of Animal Ecology : doi:10.1111/1365-2656.13435 (2021)
Abstract1. As species struggle to cope with rising ocean temperatures, temperate marine assemblages are facing major reorganization. Many benthic species have a brief but critical period dispersing through the plankton, when they are particularly susceptible to variations in temperature. Impacts of rising temperatures can thus ripple through the population with community‐wide consequences. However, responses are highly species‐specific, making it difficult to discern assemblage‐wide patterns in the life histories of different fish species. 2. Here, we evaluate the responses to temperature in the early life histories of several fish species using otolith reconstructive techniques. We also assess the consequences of future warming scenarios to this assemblage. 3. We sampled recent settlers of nine common species across a temperature gradient in the Mediterranean Sea and obtained environmental data for each individual. Using otolith microstructure, we measured early life traits including pelagic larval duration (PLD), growth rate, settlement size, hatching and settlement dates. We used a GLM framework to examine how environmental variables influenced early life‐history parameters. 4. We show that increasing temperature results in considerable reduction in the dispersal potential of temperate fish. We find a nearly universal, assemblage‐wide decline in pelagic larval duration (PLD) of between 10% and 25%. This was because, with increasing temperature, larvae grew quicker to their settlement size. Settlement size itself was less affected by temperature and appears to be an ontogenetically fixed process. 5. Given current estimates of ocean warming, there could be an assemblage‐wide reduction in larval dispersal of up to 50 km across the Mediterranean, reducing connectivity and potentially isolating populations as waters warm.
Publisher version (URL)https://doi.org/10.1111/1365-2656.13435
Appears in Collections:(CEAB) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.