Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/228776
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Carbon Source Influence on Extracellular pH Changes along Bacterial Cell-Growth

AutorSánchez-Clemente, Rubén; Guijo, Isabel M.; Nogales, Juan CSIC ORCID ; Blasco, Rafael CSIC ORCID
Palabras clavepH homeostasis
Systems biology
Microbial ecology
Biotechnology
Fecha de publicación2020
EditorMultidisciplinary Digital Publishing Institute
CitaciónGenes 11(11): 1292 (2020)
ResumenThe effect of initial pH on bacterial cell-growth and its change over time was studied under aerobic heterotrophic conditions by using three bacterial strains: Escherichia coli ATCC 25922, Pseudomonas putida KT2440, and Pseudomonas pseudoalcaligenes CECT 5344. In Luria-Bertani (LB) media, pH evolved by converging to a certain value that is specific for each bacterium. By contrast, in the buffered Minimal Medium (MM), pH was generally more stable along the growth curve. In MM with glucose as carbon source, a slight acidification of the medium was observed for all strains. In the case of E. coli, a sudden drop in pH was observed during exponential cell growth that was later recovered at initial pH 7 or 8, but was irreversible below pH 6, thus arresting further cell-growth. When using other carbon sources in MM at a fixed initial pH, pH changes depended mainly on the carbon source itself. While glucose, glycerol, or octanoate slightly decreased extracellular pH, more oxidized carbon sources, such as citrate, 2-furoate, 2-oxoglutarate, and fumarate, ended up with the alkalinization of the medium. These observations are in accordance with pH change predictions using genome-scale metabolic models for the three strains, thus revealing the metabolic reasons behind pH change. Therefore, we conclude that the composition of the medium, specifically the carbon source, determines pH change during bacterial growth to a great extent and unravel the main molecular mechanism behind this phenotype. These findings pave the way for predicting pH changes in a given bacterial culture and may anticipate the interspecies interactions and fitness of bacteria in their environment.
Descripción© 2020 by the authors.
Versión del editorhttp://dx.doi.org/10.3390/genes11111292
URIhttp://hdl.handle.net/10261/228776
DOI10.3390/genes11111292
E-ISSN2073-4425
Aparece en las colecciones: (CNB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Carbon_Sanchez_PV_Art2020.pdf2,79 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

8
checked on 17-abr-2024

SCOPUSTM   
Citations

19
checked on 11-abr-2024

WEB OF SCIENCETM
Citations

17
checked on 26-feb-2024

Page view(s)

111
checked on 19-abr-2024

Download(s)

90
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons