English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/2273
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Discrete Nonholonomic Lagrangian Systems on Lie Groupoids
Autor : Iglesias, David; Marrero, Juan Carlos; Martín de Diego, David; Martínez, Eduardo
Fecha de publicación : 12-abr-2007
Editor: Springer
Citación : arXiv:0704.1543v1
Journal of Nonlinear Science, 2007.
Resumen: This paper studies the construction of geometric integrators for nonholonomic systems. We derive the nonholonomic discrete Euler-Lagrange equations in a setting which permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it is necessary to fix a vector subbundle of the Lie algebroid associated to the Lie groupoid. We also discuss the existence of nonholonomic evolution operators in terms of the discrete nonholonomic Legendre transformations and in terms of adequate decompositions of the prolongation of the Lie groupoid. The characterization of the reversibility of the evolution operator and the discrete nonholonomic momentum equation are also considered. Finally, we illustrate with several classical examples the wide range of application of the theory (the discrete nonholonomic constrained particle, the Suslov system, the Chaplygin sleigh, the Veselova system, the rolling ball on a rotating table and the two wheeled planar mobile robot).
URI : http://hdl.handle.net/10261/2273
ISSN: 0938-8974
Aparece en las colecciones: (ICMAT) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Nonholonomic.pdf975,35 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.