English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/227148
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Functional Seasonality of Free-Living and Particle-Associated Prokaryotic Communities in the Coastal Adriatic Sea

AuthorsSteiner, Paul; Geijo, Javier; Fadeev, Eduard; Obiol, Aleix ; Sintes, Eva; Rattei, Thomas; Herndl, Gerhard J.
KeywordsCoastal Mediterranean Sea
Seasonal dynamics
Adriatic Sea
Marine snow particles
Issue DateNov-2020
PublisherFrontiers Media
CitationFrontiers in Microbiology 11: 584222 (2020)
AbstractMarine snow is an important habitat for microbes, characterized by chemical and physical properties contrasting those of the ambient water. The higher nutrient concentrations in marine snow lead to compositional differences between the ambient water and the marine snow-associated prokaryotic community. Whether these compositional differences vary due to seasonal environmental changes, however, remains unclear. Thus, we investigated the seasonal patterns of the free-living and marine snow-associated microbial community composition and their functional potential in the northern Adriatic Sea. Our data revealed seasonal patterns in both, the free-living and marine snow-associated prokaryotes. The two assemblages were more similar to each other in spring and fall than in winter and summer. The taxonomic distinctness resulted in a contrasting functional potential. Motility and adaptations to low temperature in winter and partly anaerobic metabolism in summer characterized the marine snow-associated prokaryotes. Free-living prokaryotes were enriched in genes indicative for functions related to phosphorus limitation in winter and in genes tentatively supplementing heterotrophic growth with proteorhodopsins and CO-oxidation in summer. Taken together, the results suggest a strong influence of environmental parameters on both free-living and marine snow-associated prokaryotic communities in spring and fall leading to higher similarity between the communities, while the marine snow habitat in winter and summer leads to a specific prokaryotic community in marine snow in these two seasons
Description18 pages, 6 figures, supplementary material https://www.frontiersin.org/articles/10.3389/fmicb.2020.584222/full#supplementary-material.-- The datasets generated in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ebi.ac.uk/ena, PRJEB38662
Publisher version (URL)https://doi.org/10.3389/fmicb.2020.584222
Appears in Collections:(ICM) Artículos
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.