Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/226929
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Tin selenide molecular precursor for the solution processing of thermoelectric materials and devices

AutorZhang, Yu; Xing, Congcong; Zhang, Ting CSIC; Li, Mengyao; Pacios, Merce; Yu, Xiaoting; Arbiol, Jordi CSIC ORCID CVN; Llorca, Jordi; Cadavid, Doris; Ibáñez, María; Cabot, Andreu
Fecha de publicación2020
EditorAmerican Chemical Society
CitaciónACS Applied Materials and Interfaces 12(24): 27104–27111 (2020)
ResumenIn the present work, we report a solution-based strategy to produce crystallographically textured SnSe bulk nanomaterials and printed layers with optimized thermoelectric performance in the direction normal to the substrate. Our strategy is based on the formulation of a molecular precursor that can be continuously decomposed to produce a SnSe powder or printed into predefined patterns. The precursor formulation and decomposition conditions are optimized to produce pure phase 2D SnSe nanoplates. The printed layer and the bulk material obtained after hot press displays a clear preferential orientation of the crystallographic domains, resulting in an ultralow thermal conductivity of 0.55 W m–1 K–1 in the direction normal to the substrate. Such textured nanomaterials present highly anisotropic properties with the best thermoelectric performance in plane, i.e., in the directions parallel to the substrate, which coincide with the crystallographic bc plane of SnSe. This is an unfortunate characteristic because thermoelectric devices are designed to create/harvest temperature gradients in the direction normal to the substrate. We further demonstrate that this limitation can be overcome with the introduction of small amounts of tellurium in the precursor. The presence of tellurium allows one to reduce the band gap and increase both the charge carrier concentration and the mobility, especially the cross plane, with a minimal decrease of the Seebeck coefficient. These effects translate into record out of plane ZT values at 800 K.
Versión del editorhttps://doi.org/10.1021/acsami.0c04331
URIhttp://hdl.handle.net/10261/226929
DOI10.1021/acsami.0c04331
ISSN1944-8252
Aparece en las colecciones: (CIN2) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
acsapplmaterinterfaces_a2020v12np27104-Post.pdf1,89 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

12
checked on 09-abr-2024

WEB OF SCIENCETM
Citations

12
checked on 27-feb-2024

Page view(s)

117
checked on 16-abr-2024

Download(s)

106
checked on 16-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.