Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/225532
Share/Export:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Title

Extensional tectonics during the Tyrrhenian back-arc basin formation synthetized in a new morpho-tectonic map

AuthorsLoreto, Maria Filomena; Zitellini, Nevio; Ranero, César R. CSIC ORCID; Palmiotto, Camilla; Prada, Manel CSIC ORCID
Issue Date5-May-2020
PublisherEuropean Geosciences Union
CitationEGU General Assembly (2020)
AbstractA new tectonic map is presented focused upon the extensional style accompanying the formation of the Tyrrhenian back-arc basin. Our basin-wide analysis synthetizes the interpretation of vintage multichannel and single channel seismic profiles integrated with modern seismic images and P-wave velocity models, and with a new morpho-tectonic map of the Tyrrhenian (Palmiotto & Loreto, 2019). Four distinct evolutionary opening stages have been constrained: 1) the initial Langhian(?)/Serravallian opening phase actives offshore central/southern Sardinia and offshore western Calabria; 2) the Tortonian/Messinian phase dominated by extension offshore North Sardinia-Corsica, and by oceanic accretion in the Cornaglia and Campania Terraces; 3) the Pliocene phase, dominated by mantle exhumation which was active mainly in the central Tyrrhenian and led to the full opening of Vavilov Basin; and 4) the Quaternary phase characterized by the opening of the Marsili back-arc basin. Listric and planar normal faults and their conjugates bound a series of horst and graben, half-graben and triangular basins. Distribution of extensional faults, active since Middle Miocene, throughout the basin allowed us to define a faults arrangement in the northern / central Tyrrhenian mainly related to in a pure shear which evolved a simple shear opening of continental margins. At depth, faults accommodate over a Ductile-Brittle Transitional zone cut by a low-angle detachment fault possibly responsible for mantle exhumation in the Vavilov and Magnaghi abyssal plains. In the southern Tyrrhenian, normal, inverse and transcurrent faults appear to be related to a large shear zone located along the continental margin of the northern Sicily. Extensional style variationthroughout the back-arc basin combined with wide-angle seismic velocity models, from Prada et al. (2014; 2015), allow to explore the relationship between shallow deformation, represented by faults distribution throughout the basin, and crustal-scale processes, subduction of Ionian slab and exhumation. References: Palmiotto, C., & Loreto, M. F., (2019). Regional scale morphological pattern of the Tyrrhenian Sea: New insights from EMODnet bathymetry. Geomorphology, 332, 88-99. Prada, M., Sallarès, V., Ranero, C.R., Vendrell, M.G., Grevemeyer, I., Zitellini, N. & De Franco, R., 2014. Seismic structure of the Central Tyrrhenian basin: Geophysical constraints on the nature of the main crustal domains. J. Geophys. Res.: Solid Earth, 119(1), 52-70. Prada, M., Sallarès, V., Ranero, C.R., Vendrell, M.G., Grevemeyer, I., Zitellini, N. & De Franco, R., 2015. The complex 3-D transition from continental crust to backarc magmatism and exhumed mantle in the Central Tyrrhenian basin. Geophys. J. Int., 203(1), 63-78
DescriptionEuropean Geosciences Union (EGU) General Assembly 2020, 4-8 May 2020
Publisher version (URL)https://doi.org/10.5194/egusphere-egu2020-18473
URIhttp://hdl.handle.net/10261/225532
DOI10.5194/egusphere-egu2020-18473
Appears in Collections:(ICM) Comunicaciones congresos




Files in This Item:
File Description SizeFormat
Loreto_et_al_2020_poster.pdf17,7 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work

Page view(s)

83
checked on Jul 6, 2022

Download(s)

82
checked on Jul 6, 2022

Google ScholarTM

Check

Altmetric

Dimensions


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.