English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/22514
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 15 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

New structural and functional defects in polyphosphate deficient bacteria: A cellular and proteomic study

AutorVarela, Cristian; Mauriaca, Cecilia; Paradela, Alberto; Albar, Juan Pablo; Jerez, Carlos A.; Chávez, Francisco P.
Fecha de publicación12-ene-2010
EditorBioMed Central
CitaciónBMC Microbiology 10:7 (2010)
Resumen[Background] Inorganic polyphosphate (polyP), a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2) and degraded by exopolyphosphatase (PPX). Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood.
[Results] The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS) structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed.
[Conclusions] The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP) formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA) cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.
Descripción14 pages, 7 figures, 2 tables.
Versión del editorhttp://dx.doi.org/10.1186/1471-2180-10-7
URIhttp://hdl.handle.net/10261/22514
DOI10.1186/1471-2180-10-7
ISSN1471-2180
Aparece en las colecciones: (CNB) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
1471-2180-10-7.pdf2,42 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.