Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/22481
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Title

The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals

AuthorsTingaud-Sequeira, Angèle; Calusinska, Magdalena; Finn, Roderick N.; Chauvigné, François CSIC ORCID; Lozano, Juan José; Cerdà, Joan CSIC ORCID
Issue Date11-Feb-2010
PublisherBioMed Central
CitationBMC Evolutionary Biology 10:38 (2010)
Abstract[Background] Aquaporins are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. These proteins are vital for maintaining water homeostasis in living organisms. In mammals, thirteen aquaporins (AQP0-12) have been characterized, but in lower vertebrates, such as fish, the diversity, structure and substrate specificity of these membrane channel proteins are largely unknown.
[Results] The screening and isolation of transcripts from the zebrafish (Danio rerio) genome revealed eighteen sequences structurally related to the four subfamilies of tetrapod aquaporins, i.e., aquaporins (AQP0, -1 and -4), water and glycerol transporters or aquaglyceroporins (Glps; AQP3 and AQP7-10), a water and urea transporter (AQP8), and two unorthodox aquaporins (AQP11 and -12). Phylogenetic analyses of nucleotide and deduced amino acid sequences demonstrated dual paralogy between teleost and human aquaporins. Three of the duplicated zebrafish isoforms have unlinked loci, two have linked loci, while DrAqp8 was found in triplicate across two chromosomes. Genomic sequencing, structural analysis, and maximum likelihood reconstruction, further revealed the presence of a putative pseudogene that displays hybrid exons similar to tetrapod AQP5 and -1. Ectopic expression of the cloned transcripts in Xenopus laevis oocytes demonstrated that zebrafish aquaporins and Glps transport water or water, glycerol and urea, respectively, whereas DrAqp11b and -12 were not functional in oocytes. Contrary to humans and some rodents, intrachromosomal duplicates of zebrafish AQP8 were water and urea permeable, while the genomic duplicate only transported water. All aquaporin transcripts were expressed in adult tissues and found to have divergent expression patterns. In some tissues, however, redundant expression of transcripts encoding two duplicated paralogs seems to occur.
[Conclusion] The zebrafish genome encodes the largest repertoire of functional vertebrate aquaporins with dual paralogy to human isoforms. Our data reveal an early and specific diversification of these integral membrane proteins at the root of the crown-clade of Teleostei. Despite the increase in gene copy number, zebrafish aquaporins mostly retain the substrate specificity characteristic of the tetrapod counterparts. Based upon the integration of phylogenetic, genomic and functional data we propose a new classification for the piscine aquaporin superfamily.
Description18 pages, 8 figures, 6 additional files.
Publisher version (URL)http://dx.doi.org/10.1186/1471-2148-10-38
URIhttp://hdl.handle.net/10261/22481
DOI10.1186/1471-2148-10-38
ISSN1471-2148
Appears in Collections:(CRAG) Artículos
(ICM) Artículos

Files in This Item:
File Description SizeFormat
1471-2148-10-38.pdf3,52 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work

PubMed Central
Citations

45
checked on May 3, 2022

SCOPUSTM   
Citations

121
checked on May 12, 2022

WEB OF SCIENCETM
Citations

112
checked on May 11, 2022

Page view(s)

327
checked on May 17, 2022

Download(s)

316
checked on May 17, 2022

Google ScholarTM

Check

Altmetric

Dimensions


Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.