English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/22205
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Reconstrucción de series temporales en ciencias medioambientales

AutorBenítez Gilabert, Manuel; Álvarez Cobelas, Miguel
Palabras claveMissing data
Conventional recovery methods
EMB algorithm
Amelia-II software
Fecha de publicación28-oct-2008
CitaciónRevista Latinoamericana de Recursos Naturales 4(3): 326-335 (2008)
ResumenAs many environmental data are increasingly recorded on a long term basis, it is unfortunately frequent that they show missing data (MD). In addition to information losses, MD also prevent the use of time series analysis and present the researcher the dilemma of either apply sophisticated methods of analysis or attempt to fill those MD gaps in order to apply conventional methods. In any case, further statistical treatment usually needs complete time series and hence MD must be estimated. The main statistical methods to tackle this problem are briefly outlined here, and available software is reported as well. A case of time series reconstruction of Spanish rainfall and water quality to exemplify these methods is also described, using the maximum likelihood approach of the Expectation-Maximization- Bayesian (EMB) algorithm and the AMELIA-II free software.
Descripción11 pages, figures, and tables statistics.
URIhttp://hdl.handle.net/10261/22205
ISSN1870-0667
Aparece en las colecciones: (IRN) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RLRN 2008.pdf1,18 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.