English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/220930
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

Weekly reconstruction of pH and total alkalinity in an upwelling-dominated coastal ecosystem: The case of Ría de Vigo (NW Spain) between 1992 and 2019 (Discussions version)

AuthorsBroullón, Daniel; Pérez, Fiz F. ; Doval, M. Dolores
KeywordsTotal alkalinity
pH
Time series
Neural networks
Ocean acidification
Seasonal cycle
Long-term trends
Issue Date2020
CitationBroullón, Daniel; Pérez, Fiz F.; Doval, M. Dolores; 2020; "Weekly reconstruction of pH and total alkalinity in an upwelling-dominated coastal ecosystem: The case of Ría de Vigo (NW Spain) between 1992 and 2019 (Discussions version) [Dataset]"; Digital.Csic; http://dx.doi.org/10.20350/digitalCSIC/12642
DescriptionThe item is made of 6 files: 1) README.txt; 2) INTECMAR_NN-database.csv: Dataset containing all the input variables used compute the time series of AT and pH as well as these two computed variables; 3) Training_database.xlsx: Dataset containing the data to train and test the neural networks; 4) pH_NN.mat is the neural network object used to compute the pH time series; 5) AT_NN.mat is the neural network object used to compute the total alkalinity time series; 6) Source_code.rar contains the MATLAB files to configure, train and validate the neural networks created in this study
URIhttp://hdl.handle.net/10261/220930
DOIhttp://dx.doi.org/10.20350/digitalCSIC/12642
Appears in Collections:(IIM) Conjuntos de datos
Files in This Item:
File Description SizeFormat 
INTECMAR_NN-database.csv5,54 MBUnknownView/Open
AT_NN.mat13,27 kBUnknownView/Open
pH_NN.mat8,06 kBUnknownView/Open
Training_database.xlsx5,93 MBMicrosoft Excel XMLView/Open
Source_code.rar10 kBUnknownView/Open
README.txt687 BTextView/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.