Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/219721
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorZhao, E. W.-
dc.contributor.authorLiu, T.-
dc.contributor.authorJónsson, E.-
dc.contributor.authorLee, J.-
dc.contributor.authorTemprano, I.-
dc.contributor.authorJethwa, R. B.-
dc.contributor.authorWang, A.-
dc.contributor.authorSmith, H.-
dc.contributor.authorCarretero-González, Javier-
dc.contributor.authorSong, Q.-
dc.contributor.authorGrey, C.P.-
dc.date.accessioned2020-09-16T11:20:09Z-
dc.date.available2020-09-16T11:20:09Z-
dc.date.issued2020-
dc.identifierdoi: 10.1038/s41586-020-2081-7-
dc.identifierissn: 0028-0836-
dc.identifiere-issn: 1476-4687-
dc.identifier.citationNature 579: 224-228 (2020)-
dc.identifier.urihttp://hdl.handle.net/10261/219721-
dc.description.abstractLarge-scale energy storage is becoming increasingly critical to balancing renewable energy production and consumption. Organic redox flow batteries, made from inexpensive and sustainable redox-active materials, are promising storage technologies that are cheaper and less environmentally hazardous than vanadium-based batteries, but they have shorter lifetimes and lower energy density. Thus, fundamental insight at the molecular level is required to improve performance. Here we report two in situ nuclear magnetic resonance (NMR) methods of studying redox flow batteries, which are applied to two redox-active electrolytes: 2,6-dihydroxyanthraquinone (DHAQ) and 4,4′-((9,10-anthraquinone-2,6-diyl)dioxy) dibutyrate (DBEAQ). In the first method, we monitor the changes in the H NMR shift of the liquid electrolyte as it flows out of the electrochemical cell. In the second method, we observe the changes that occur simultaneously in the positive and negative electrodes in the full electrochemical cell. Using the bulk magnetization changes (observed via the H NMR shift of the water resonance) and the line broadening of the H shifts of the quinone resonances as a function of the state of charge, we measure the potential differences of the two single-electron couples, identify and quantify the rate of electron transfer between the reduced and oxidized species, and determine the extent of electron delocalization of the unpaired spins over the radical anions. These NMR techniques enable electrolyte decomposition and battery self-discharge to be explored in real time, and show that DHAQ is decomposed electrochemically via a reaction that can be minimized by limiting the voltage used on charging. We foresee applications of these NMR methods in understanding a wide range of redox processes in flow and other electrochemical systems.-
dc.description.sponsorshipW.Z. and C.P.G. acknowledge support from Centre of Advanced Materials for Integrated Energy Systems (CAM-IES), via EPSRC grant number EP/P007767/1. E.W.Z., R.J. and C.P.G. acknowledge support from Shell. E.W.Z. acknowledges support from the Manifest exchange programme via EPSRC grant number EP/N032888/1. T.L. acknowledges support from the Schlumberger Fellowship, Darwin College. E.J. acknowledges support from the Swedish Research Council. We thank A. Brookfield for assistance with the EPR measurement; P. A. A. Klusener from Shell, H. Bronstein, I. Fleming, D. S. Wright, K. Märker, C. Xu, P. C. M. M. Magusin from the University of Cambridge and E. Castillo-Martínez from Universidad Complutense de Madrid for discussions; R. Tan from Imperial College London and D. Lyu, Y. Kim, Y. Jin, and J. Lu from the University of Cambridge for assistance setting up the redox flow battery. A.W. and Q.S. acknowledge Imperial College start-up funding and CAM-IES seed funding. J.C.G. acknowledges support from the Spanish Ministry of Science, Innovation and Universities through a Ramon y Cajal Fellowship (RYC-2015-17722) and the Retos Project (MAT2017-86796-R).-
dc.languageeng-
dc.publisherSpringer Nature-
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RYC-2015-17722-
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/MAT2017-86796-R-
dc.rightsclosedAccess-
dc.titleIn situ NMR metrology reveals reaction mechanisms in redox flow batteries-
dc.typeartículo-
dc.identifier.doi10.1038/s41586-020-2081-7-
dc.relation.publisherversionhttp://dx.doi.org/10.1038/s41586-020-2081-7-
dc.date.updated2020-09-16T11:20:10Z-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España)-
dc.contributor.funderEngineering and Physical Sciences Research Council (UK)-
dc.contributor.funderSwedish Research Council-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000266es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
Aparece en las colecciones: (ICTP) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

120
checked on 12-mar-2024

WEB OF SCIENCETM
Citations

110
checked on 28-feb-2024

Page view(s)

126
checked on 26-mar-2024

Download(s)

109
checked on 26-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.