English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/21953
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 39 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Effect of particle geometry on phase transitions in two-dimensional liquid crystals

AutorMartínez-Ratón, Y.; Velasco, Enrique ; Mederos, Luis
Fecha de publicación26-ene-2005
EditorAmerican Institute of Physics
CitaciónJournal of Chemical Physics 122(6): 064903 (2005)
ResumenUsing a version of density-functional theory which combines Onsager approximation and fundamental-measure theory for spatially nonuniform phases, we have studied the phase diagram of freely rotating hard rectangles and hard discorectangles. We find profound differences in the phase behavior of these models, which can be attributed to their different packing properties. Interestingly, bimodal orientational distribution functions are found in the nematic phase of hard rectangles, which cause a certain degree of biaxial order, albeit metastable with respect to spatially ordered phases. This feature is absent in discorectangles, which always show unimodal behavior. This result may be relevant in the light of recent experimental results which have confirmed the existence of biaxial phases. We expect that some perturbation of the particle shapes (either a certain degree of polydispersity or even bimodal dispersity in the aspect ratios) may actually destabilize spatially ordered phases thereby stabilizing the biaxial phase.
Descripción8 pages, 7 figures, 1 appendix.
Versión del editorhttp://dx.doi.org/10.1063/1.1849159
URIhttp://hdl.handle.net/10261/21953
DOI10.1063/1.1849159
ISSN0021-9606
Aparece en las colecciones: (ICMM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
particle geometry.pdf121,15 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.