Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/219162
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Imaging of Martian Circulation Patterns and Atmospheric Tides Through MAVEN/IUVS Nightglow Observations

AutorSchneider, Nicholas; Milby, Z.; Jain, S. K.; González-Galindo, F. CSIC ORCID ; Royer, E.; Gérard, Jean-Claude; Stiepen, A.; Deighan, J.; Stewart, A. I. F.; Forget, F.; Lefèvre, F.; Bougher, S.W.
Palabras claveAtmosphere
Circulation
Mars
Nightglow
Tides
Ultraviolet
Fecha de publicación5-ago-2020
EditorAmerican Geophysical Union
CitaciónJournal of Geophysical Research - Part A - Space Physics 125(8): e2019JA027318 (2020)
ResumenWe report results from a study of two consecutive Martian years of imaging observations of nitric oxide ultraviolet nightglow by the Imaging Ultraviolet Spectrograph (IUVS) on the Mars Atmosphere and Volatile Evolution (MAVEN) mission spacecraft. The emission arises from recombination of N and O atoms in Mars' nightside mesosphere. The brightness traces the reaction rate as opposed to the abundance of constituents, revealing where circulation patterns concentrate N and O and enhance recombination. Emissions are brightest around the winter poles, with equatorial regions brightening around the equinoxes. These changes offer clear evidence of circulation patterns transitioning from a single cross-equatorial cell operating during solstice periods to more symmetric equator-to-poles circulation around the equinoxes. Prominent atmospheric tides intensify the emissions at different longitudes, latitude ranges, and seasons. We find a strong eastward-propagating diurnal tide (DE2) near the equator during the equinoxes, with a remarkably bright spot narrowly confined near (0°, 0°). Wave features at the opposite winter poles are dissimilar, reflecting different circulation patterns at perihelion versus aphelion. LMD-MGCM simulations agree with the patterns of most observed phenomena, confirming that the model captures the dominant physical processes. At the south winter pole, however, the model fails to match a strong wave-1 spiral feature. Observed brightnesses exceed model predictions by a factor of 1.9 globally, probably due to an underestimation of the dayside production of N and O atoms. Further study of discrepancies between the model and observations offers opportunities to improve our understanding of chemical and transport processes controlling the emission. ©2020. American Geophysical Union. All Rights Reserved.
Versión del editorhttp://dx.doi.org/10.1029/2019JA027318
URIhttp://hdl.handle.net/10261/219162
DOI10.1029/2019JA027318
ISSN2169-9380
Aparece en las colecciones: (IAA) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
IAA_2020JGRA..12527318S.pdf7,96 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

11
checked on 06-mar-2024

WEB OF SCIENCETM
Citations

11
checked on 22-feb-2024

Page view(s)

158
checked on 18-mar-2024

Download(s)

112
checked on 18-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.