English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/219013
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Magnetic chains of Fe3 clusters in the {Fe3YO2} butterfly molecular compound

AuthorsRubín, Javier; Badía-Romano, L.; Luis, Fernando; Mereacre, V.; Prodius, D.; Arauzo, Ana B.; Bartolomé, Fernando; Bartolomé, Juan
Issue Date2020
PublisherRoyal Society of Chemistry (UK)
CitationDalton Transactions 49(9): 2979-2988 (2020)
AbstractThe “butterfly” molecule [Fe3Y(μ3-O)2(CCl3COO)8(H2O)(THF)3] (in brief {Fe3YO2}) includes three Fe3+ ions which build a robust Fe3 cluster with a strong intracluster antiferromagnetic exchange Image ID:c9dt04816b-t1.gif and a total spin S = 5/2. It represents the starting magnetic system to study further interactions with magnetic rare earths when Y is replaced with lanthanides. We present heat capacity and equilibrium susceptibility measurements below 2 K, which show that each cluster has a sizeable magnetic anisotropy pointing to the existence of intercluster interactions. However, no phase transition to a long-range magnetically ordered phase is observed down to 20 mK. The intercluster interaction is analysed in the framework of the one-dimensional Blume–Capel model with an antiferromagnetic chain interaction constant J/kB = −40(2) mK between Fe3 cluster spins, and a uniaxial anisotropy with parameter D/kB = −0.56(3) K. This is associated to single chains of Fe3 clusters oriented along the shortest intercluster distances displayed by the crystal structure of {Fe3YO2}. Ac susceptibility measurements reveal that the magnetic relaxation is dominated by a quantum tunnelling process below 0.2 K, and by thermally activated processes above this temperature. The experimental activation energy of this single chain magnet, Ea/kB = 3.4(6) K, can be accounted for by the combination of contributions arising from single-molecule magnetic anisotropy and spin–spin correlations along the chains.
Publisher version (URL)https://doi.org/10.1039/C9DT04816B
Appears in Collections:(ICMA) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf59,24 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.