English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/218769
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorSerrà, Albertes_ES
dc.contributor.authorArtal, Raüles_ES
dc.contributor.authorGarcía‐Amorós, Jaumees_ES
dc.contributor.authorSepúlveda, Borjaes_ES
dc.contributor.authorGómez, Elviraes_ES
dc.contributor.authorNogués, Josepes_ES
dc.contributor.authorPhilippe, Laetitiaes_ES
dc.date.accessioned2020-08-28T07:00:21Z-
dc.date.available2020-08-28T07:00:21Z-
dc.date.issued2020-
dc.identifier.citationAdvanced Science 7(3): 1902447 (2020)es_ES
dc.identifier.urihttp://hdl.handle.net/10261/218769-
dc.description.abstractWater remediation and development of carbon‐neutral fuels are a priority for the evermore industrialized society. The answer to these challenges should be simple, sustainable, and inexpensive. Thus, biomimetic‐inspired circular and holistic processes combing water remediation and biofuel production can be an appealing concept to deal with these global issues. A simple circular approach using helical Spirulina platensis microalgae as biotemplates to synthesize Ni@ZnO@ZnS photocatalysts for efficient solar water decontamination and bioethanol production during the recycling process is presented. Under solar irradiation, the Ni@ZnO@ZnS‐Spirulina photocatalyst exhibits enhanced activity (mineralization efficiency >99%) with minimal photocorrosion and excellent reusability. At the end of its effective lifetime for water remediation, the microalgae skeleton (mainly glycogen and glucose) of the photocatalyst is recycled to directly produce bioethanol by simultaneous saccharification and fermentation process. An outstanding ethanol yield of 0.4 L kg−1, which is similar to the highest yield obtained from oxygenic photosynthetic microorganisms, is obtained. Thus, the entire process allows effective solar photocatalytic water remediation and bioethanol production at room temperature using simple and easily scalable procedures that simultaneously fixes carbon dioxide, thereby constituting a zero‐carbon‐emission circular process.es_ES
dc.description.sponsorshipThe work leading to these results received funding from Metrohm foundation, from the 2017‐SGR‐292 project from the Generalitat de Catalunya, and the PCIN2016‐093 and TEC2017‐85059‐C3‐2‐R projects (co‐financed by the Fondo Europeo de Desarrollo Regional, FEDER) from the Spanish Ministerio de Economía y Competitividad (MINECO). The authors also acknowledge Espirulina Natural (Dra. Ester Falgàs) and Societé Industrielle Lesaffre, Division Leaf for the provision of the microalgae and Ethanol Red yeast, respectively. A.S. would like to acknowledge funding from the EMPAPOSTDOCS‐II program. The EMPAPOSTDOCS‐II programme has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska‐Curie grant agreement number 754364. ICN2 is funded by the CERCA Programme/Generalitat de Catalunya. The ICN2 is supported by the Severo Ochoa Centres of Excellence programme, funded by the Spanish Research Agency (AEI, grant no. SEV‐2017‐0706).es_ES
dc.language.isoenges_ES
dc.publisherWiley-VCHes_ES
dc.relationMINECO/ICTI2013-2016/PCIN-2016-093es_ES
dc.relationMICIU/ICTI2017-2020/TEC2017-85059-C3-2-Res_ES
dc.relationTEC2017-85059-C3-2-R/AEI/10.13039/501100011033es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/754364es_ES
dc.relationMICIU/ICTI2017-2020/SEV-2017-0706es_ES
dc.relationSEV-2017-0706/AEI/10.13039/501100011033es_ES
dc.relation.isversionofPublisher's versiones_ES
dc.rightsopenAccesses_ES
dc.titleHybrid Ni@ZnO@ZnS‐microalgae for circular economy: A smart route to the efficient integration of solar photocatalytic water decontamination and bioethanol productiones_ES
dc.typeartículoes_ES
dc.identifier.doihttp://dx.doi.org/10.1002/advs.201902447-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttps://doi.org/10.1002/advs.201902447es_ES
dc.identifier.e-issn2198-3844-
dc.rights.licensehttp://creativecommons.org/licenses/by/4.0/es_ES
dc.contributor.funderEuropean Commissiones_ES
dc.contributor.funderGeneralitat de Catalunyaes_ES
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España)es_ES
dc.contributor.funderAgencia Estatal de Investigación (España)es_ES
dc.contributor.funderMinisterio de Economía y Competitividad (España)es_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100002809es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011033es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
Appears in Collections:(CIN2) Artículos
Files in This Item:
File Description SizeFormat 
hybriproduc.pdf2,58 MBAdobe PDFThumbnail
View/Open
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.