English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/218767
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorSaunderson, Tom G.es_ES
dc.contributor.authorAnnett, James F.es_ES
dc.contributor.authorÚjfalussy, Balázses_ES
dc.contributor.authorCsire, Gábores_ES
dc.contributor.authorGradhand, Martines_ES
dc.date.accessioned2020-08-28T06:38:10Z-
dc.date.available2020-08-28T06:38:10Z-
dc.date.issued2020-
dc.identifier.citationPhysical Review B 101(6): 064510 (2020)es_ES
dc.identifier.issn2469-9950-
dc.identifier.urihttp://hdl.handle.net/10261/218767-
dc.description.abstractWe implement the Bogoliubov–de Gennes equation in a screened Korringa-Kohn-Rostoker method for solving, self-consistently, the superconducting state for three-dimensional crystals. This method combines the full complexity of the underlying electronic structure and Fermi surface geometry with a simple phenomenological parametrization for the superconductivity. We apply this theoretical framework to the known s-wave superconductors Nb, Pb, and MgB2. In these materials multiple distinct peaks at the gap in the density of states were observed, showing significant gap anisotropy which is in good agreement with experiment. Qualitatively, the results can be explained in terms of the k-dependent Fermi velocities on the Fermi surface sheets exploiting concepts from BCS theory.es_ES
dc.description.sponsorshipThe above work was supported by the Centre for Doctoral Training in Condensed Matter Physics, funded by EPSRC Grant No. EP/L015544/1. B.Ú. was supported by the Hungarian National Research, Development and Innovation Office under Contract No. OTKA K115632 and a BME Nanotechnology FIKP grant (Grant No. BME FIKP-NAT). G.C. gratefully acknowledges support from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 754510.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/754510es_ES
dc.relation.isversionofPublisher's versiones_ES
dc.rightsopenAccesses_ES
dc.titleGap anisotropy in multiband superconductors based on multiple scattering theoryes_ES
dc.typeartículoes_ES
dc.identifier.doi10.1103/PhysRevB.101.064510-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttps://doi.org/10.1103/PhysRevB.101.064510es_ES
dc.identifier.e-issn2469-9969-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/es_ES
dc.contributor.funderEngineering and Physical Sciences Research Council (UK)es_ES
dc.contributor.funderNational Research, Development and Innovation Office (Hungary)es_ES
dc.contributor.funderEuropean Commissiones_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000266es_ES
Appears in Collections:(CIN2) Artículos
Files in This Item:
File Description SizeFormat 
gaptheory.pdf2,54 MBAdobe PDFThumbnail
View/Open
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.