English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/218637
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Wrinkling poly(trimethylene 2,5-furanoate) free-standing films: Nanostructure formation and physical properties

AuthorsSoccio, Michelina ; Lotti, Nadia; Munari, Andrea; Rebollar, Esther ; Martínez-Tong, Daniel E.
Issue Date2020
CitationPolymer 202: 122666 (2020)
AbstractPolymer nanostructures were developed on fully bio-based poly(trimethylene furanoate) (PTF) films, by using the technique of Laser Induced Periodic Surface Structures (LIPSS). We found that irradiation times between 1 and 8 min allowed the formation of periodic and nanometric ripples, when using an UV pulsed laser source at a fluence of 8 mJ/cm2. The wrinkled surfaces were studied by a combined macro- and nanoscale approach. We evaluated possible physicochemical changes taking place on the polymer surface after irradiation by infrared spectroscopy, contact angle measurements and atomic force microscopy. The macroscopic properties of PTF showed almost no changes after nanostructure formation, differently from the results previously found for the terephthalic counterparts, as poly(ethylene terephthalate), PET, and poly(trimethylene terephthalate), PTT. At the nanoscale, the surface mechanical properties of the nanostructured PTF were found to be improved, as evidenced by force spectroscopy measurements. In particular, stiffer surfaces characterized by an increased Young's modulus were measured for the nanostructured sample.
Publisher version (URL)https://doi.org/10.1016/j.polymer.2020.122666
Appears in Collections:(CFM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf59,24 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.