English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/218521
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Poly(ethylene oxide) melt intercalation in graphite oxide: sensitivity to topology, cyclic versus linear chains

AuthorsBarroso-Bujans, Fabienne ; Allgaier, J.; Alegría, Ángel
Issue Date2020
PublisherAmerican Chemical Society
CitationMacromolecules 53(1): 406–416 (2020)
AbstractThe role of poly(ethylene oxide) (PEO) topology in the melt intercalation in graphite oxide (GO)-based materials is investigated. The intercalation of PEO in GO leads to changes in the GO interlayer space and to the suppression of polymer thermal transitions (crystallization and glass transition). Herein, we perform kinetic measurements of the melt intercalation of cyclic and linear PEO (CPEO and LPEO) with Mn = 2–20 kg/mol in different GO-based structures by monitoring the reduction of melting peak areas of PEO. We demonstrate that high sensitivity to PEO topology can be achieved using GO partially pillared with 1,6-hexanediamine. Using only 1 wt % of pillars, the rate constants of cyclic PEO become up to a 100 times smaller than that of linear chains of similar molecular weight. This enormous difference in the intercalation kinetics of topologically different PEO chains cannot be achieved in nonpillared GO, where the rate constants of cyclic PEO presented values that were only up to 4 times smaller than that of their linear analogues. The dramatic reduction in the intercalation rate for CPEO in the presence of pillars indicates that topological constraints (formation of squeezed structures with double folded strand conformations) are the most important factors affecting the melt intercalation kinetics. The results suggest that it is possible to restrict the intercalation of cyclic PEO into partially pillared GO, whilst allowing the linear analogue to diffuse through the GO interlayer space. This important finding could be the basis for developing new methods of purification of cyclic polymers.
Publisher version (URL)https://doi.org/10.1021/acs.macromol.9b01846
URIhttp://hdl.handle.net/10261/218521
DOI10.1021/acs.macromol.9b01846
ISSN0024-9297
E-ISSN1520-5835
Appears in Collections:(CFM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf59,24 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.