English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/218372
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Probing the spectral dimension of quantum network geometries

AuthorsNokkala, Johannes; Piilo, Jyrki; Bianconi, Ginestra
Issue Date2020
CitationarXiv: 2005.09665 (2020)
AbstractWe consider an environment for an open quantum system described by a "Quantum Network Geometry with Flavor" (QNGF) in which the nodes are coupled quantum oscillators. The geometrical nature of QNGF is reflected in the spectral properties of the Laplacian matrix of the network which display a finite spectral dimension, determining also the frequencies of the normal modes of QNGFs. We show that an a priori unknown spectral dimension can be indirectly estimated by coupling an auxiliary open quantum system to the network and probing the normal mode frequencies in the low frequency regime. We find that the network parameters do not affect the estimate; in this sense it is a property of the network geometry, rather than the values of, e.g., oscillator bare frequencies or the constant coupling strength. Numerical evidence suggests that the estimate is also robust both to small changes in the high frequency cutoff and noisy or missing normal mode frequencies. We propose to couple the auxiliary system to a subset of network nodes with random coupling strengths to reveal and resolve a sufficiently large subset of normal mode frequencies.
Publisher version (URL)https://arxiv.org/abs/2005.09665
Appears in Collections:(IFISC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf59,24 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.