English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/218220
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Galaxy classification: Deep learning on the OTELO and COSMOS databases

Authorsde Diego, José A.; Nadolny, Jakub; Bongiovanni, Ángel; Cepa, Jordi; Pović, Mirjana; Pérez García, Ana María; Padilla Torres, Carmen P.; Lara-López, Maritza A.; Cerviño, Miguel ; Pérez Martínez, Ricardo; Alfaro, Emilio J. ; Castañeda, Héctor O.; Fernández Lorenzo, M. ; Gallego, Jesús; González, J. Jesús; González-Serrano, José Ignacio ; Pintos-Castro, Irene; Sánchez-Portal, Miguel; Cedrés, Bernabé; González-Otero, Mauro; Heath Jones, D.; Bland-Hawthorn, Joss
KeywordsGalaxies: general
Methods: statistical
Issue Date2020
PublisherEDP Sciences
CitationAstronomy & Astrophysics 638: A134 (2020)
AbstractContext. The accurate classification of hundreds of thousands of galaxies observed in modern deep surveys is imperative if we want to understand the universe and its evolution. Aims. Here, we report the use of machine learning techniques to classify early- and late-type galaxies in the OTELO and COSMOS databases using optical and infrared photometry and available shape parameters: either the Sérsic index or the concentration index. Methods. We used three classification methods for the OTELO database: (1) u? -? r color separation, (2) linear discriminant analysis using u? -? r and a shape parameter classification, and (3) a deep neural network using the r magnitude, several colors, and a shape parameter. We analyzed the performance of each method by sample bootstrapping and tested the performance of our neural network architecture using COSMOS data. Results. The accuracy achieved by the deep neural network is greater than that of the other classification methods, and it can also operate with missing data. Our neural network architecture is able to classify both OTELO and COSMOS datasets regardless of small differences in the photometric bands used in each catalog. Conclusions. In this study we show that the use of deep neural networks is a robust method to mine the cataloged data. © ESO 2020.
Publisher version (URL)http://dx.doi.org/10.1051/0004-6361/202037697
URIhttp://hdl.handle.net/10261/218220
Identifiersdoi: 10.1051/0004-6361/202037697
e-issn: 1432-0746
issn: 0004-6361
Appears in Collections:(IFCA) Artículos
(CAB) Artículos
(IAA) Artículos
Files in This Item:
File Description SizeFormat 
IAA_2020AA...638A.134D.pdf1,59 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.