English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/217899
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorMalaspina, David C.es_ES
dc.contributor.authorFaraudo, Jordies_ES
dc.date.accessioned2020-08-13T08:58:09Z-
dc.date.available2020-08-13T08:58:09Z-
dc.date.issued2020-10-26-
dc.identifier.citationBiointerphases 15(5): 051008 (2020)-
dc.identifier.issn1934-8630-
dc.identifier.urihttp://hdl.handle.net/10261/217899-
dc.description.abstractA prominent feature of coronaviruses is the presence of a large glycoprotein spike protruding from a lipidic membrane. This glycoprotein spike determines the interaction of coronaviruses with the environment and the host. In this paper, we perform all atomic molecular dynamics simulations of the interaction between the SARS-CoV-2 trimeric glycoprotein spike and surfaces of materials. We considered a material with high hydrogen bonding capacity (cellulose) and a material capable of strong hydrophobic interactions (graphite). Initially, the spike adsorbs to both surfaces through essentially the same residues belonging to the receptor binding subunit of its three monomers. Adsorption onto cellulose stabilizes in this configuration, with the help of a large number of hydrogen bonds developed between cellulose and the three receptor-binding domains of the glycoprotein spike. In the case of adsorption onto graphite, the initial adsorption configuration is not stable and the surface induces a substantial deformation of the glycoprotein spike with a large number of adsorbed residues not pertaining to the binding subunits of the spike monomers.es_ES
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Science and Innovation through grant RTI2018-096273-B-I00 and the “Severo Ochoa” Grant SEV-2015-0496 for Centres of Excellence in R&D awarded to ICMAB. We thank the CESGA supercomputing center for computer time and technical support at the Finisterrae supercomputer. D. C. Malaspina is supported by the European Union Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 6655919.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Vacuum Societyes_ES
dc.relationMICIU/ICTI2017-2020/RTI2018-096273-B-I00es_ES
dc.relationRTI2018-096273-B-I00/AEI/10.13039/501100011033es_ES
dc.relationMINECO/ICTI2013-2016/SEV-2015-0496es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/6655919es_ES
dc.relation.isversionofPostprintes_ES
dc.rightsopenAccesses_ES
dc.titleComputer Simulations of the interaction between SARS-CoV-2 spike glycoprotein and different surfaceses_ES
dc.typeartículoes_ES
dc.identifier.doihttp://dx.doi.org/10.1116/6.0000502-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttps://doi.org/10.1116/6.0000502es_ES
dc.identifier.e-issn1559-4106-
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España)es_ES
dc.contributor.funderAgencia Estatal de Investigación (España)es_ES
dc.contributor.funderMinisterio de Economía y Competitividad (España)es_ES
dc.contributor.funderEuropean Commissiones_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011033es_ES
dc.contributor.orcidMalaspina, David C. [0000-0002-5420-9534]es_ES
dc.contributor.orcidFaraudo, Jordi [0000-0002-6315-4993]es_ES
Appears in Collections:(ICMAB) Artículos
(VICYT) Colección Especial COVID-19
Files in This Item:
File Description SizeFormat 
Malaspina_Biointerph_2020_editorial.pdf4,09 MBAdobe PDFThumbnail
View/Open
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.