English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/217848
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Hidden markov models predict the future choice better than a PSTH-based method

AuthorsMarcos, Encarni; Londei, Fabrizio; Genovesio, Aldo
Issue Date2019
PublisherMassachusetts Institute of Technology
CitationNeural Computation 31(9): 1874-1890 (2019)
AbstractBeyond average firing rate, other measurable signals of neuronal activity are fundamental to an understanding of behavior. Recently, hidden Markov models (HMMs) have been applied to neural recordings and have described how neuronal ensembles process information by going through sequences of different states. Such collective dynamics are impossible to capture by just looking at the average firing rate. To estimate how well HMMs can decode information contained in single trials, we compared HMMs with a recently developed classification method based on the peristimulus time histogram (PSTH). The accuracy of the two methods was tested by using the activity of prefrontal neurons recorded while two monkeys were engaged in a strategy task. In this task, the monkeys had to select one of three spatial targets based on an instruction cue and on their previous choice. We show that by using the single trial's neural activity in a period preceding action execution, both models were able to classify the monkeys' choice with an accuracy higher than by chance. Moreover, the HMM was significantly more accurate than the PSTH-based method, even in cases in which the HMM performance was low, although always above chance. Furthermore, the accuracy of both methods was related to the number of neurons exhibiting spatial selectivity within an experimental session. Overall, our study shows that neural activity is better described when not only the mean activity of individual neurons is considered and that therefore, the study of other signals rather than only the average firing rate is fundamental to an understanding of the dynamics of neuronal ensembles.
Publisher version (URL)https://doi.org/10.1162/neco_a_01216
Appears in Collections:(IN) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf59,24 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.