English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/217838
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Glioblastoma ablates pericytes antitumor immune function through aberrant up-regulation of chaperone-mediated autophagy

AuthorsValdor, Ruth; García-Bernal, David ; Riquelme, Dolores; Martinez, Carlos M.; Moraleda, José María; Cuervo, Ana Maria; Macian, Fernando; Martínez, Salvador
KeywordsChaperone-mediated autophagy
Glioblastoma
Pericytes
Tumor
Immunosuppressive function
Issue Date2019
PublisherNational Academy of Sciences (U.S.)
CitationProceedings of the National Academy of Sciences of the USA 116(41): 20655-20665 (2019)
AbstractThe contractile perivascular cells, pericytes (PC), are hijacked by glioblastoma (GB) to facilitate tumor progression. PC’s protumorigenic function requires direct interaction with tumor cells and contributes to the establishment of immunotolerance to tumor growth. Cancer cells up-regulate their own chaperone-mediated autophagy (CMA), a process that delivers selective cytosolic proteins to lysosomes for degradation, with pro-oncogenic effects. However, the possible impact that cancer cells may have on CMA of surrounding host cells has not been explored. We analyzed the contribution of CMA to the GB-induced changes in PC biology. We have found that CMA is markedly up-regulated in PC in response to the oxidative burst that follows PC–GB cell interaction. Genetic manipulations to block the GB-induced up-regulation of CMA in PC allows them to maintain their proinflammatory function and to support the induction of effective antitumor T cell responses required for GB clearance. GB-induced up-regulation of CMA activity in PC is essential for their effective interaction with GB cells that help tumor growth. We show that CMA inhibition in PC promotes GB cell death and the release of high immunogenic levels of granulocyte-macrophage colony stimulating factor (GM-CSF), through deregulation of the expression of cell-to-cell interaction proteins and protein secretion. A GB mouse model grafted in vivo with CMA-defective PC shows reduced GB proliferation and effective immune response compared to mice grafted with control PC. Our findings identify abnormal up-regulation of CMA as a mechanism by which GB cells elicit the immunosuppressive function of PC and stabilize GB–PC interactions necessary for tumor cell survival.
Publisher version (URL)https://doi.org/10.1073/pnas.1903542116
URIhttp://hdl.handle.net/10261/217838
DOI10.1073/pnas.1903542116
ISSN0027-8424
E-ISSN1091-6490
Appears in Collections:(IN) Artículos
Files in This Item:
File Description SizeFormat 
glioblautophag.pdf2,17 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.