English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/217239
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Structural Identifiability and Observability of Compartmental Models of the COVID-19 Pandemic

AuthorsMassonis, Gemma; Banga, Julio R. ; Villaverde, A. F.
KeywordsIdentifiability
Observability
Dynamic modelling
Epidemiology
COVID-19
Issue Date25-Jun-2020
PublisherarXiv
AbstractThe recent coronavirus disease (COVID-19) outbreak has dramatically increased the public awareness and appreciation of the utility of dynamic models. At the same time, the dissemination of contradictory model predictions has highlighted their limitations. If some parameters and/or state variables of a model cannot be determined from output measurements, its ability to yield correct insights – as well as the possibility of controlling the system – may be compromised. Epidemic dynamics are commonly analysed using compartmental models, and many variations of such models have been used for analysing and predicting the evolution of the COVID-19 pandemic. In this paper we survey the different models proposed in the literature, assembling a list of 36 model structures and assessing their ability to provide reliable information. We address the problem using the control theoretic concepts of structural identifiability and observability. Since some parameters can vary during the course of an epidemic, we consider both the constant and time-varying parameter assumptions. We analyse the structural identifiability and observability of all of the models, considering all plausible choices of outputs and time-varying parameters, which leads us to analyse 255 different model versions. We classify the models according to their structural identifiability and observability under the different assumptions and discuss the implications of the results. We also illustrate with an example several alternative ways of remedying the lack of observability of a model. Our analyses provide guidelines for choosing the most informative model for each purpose, taking into account the available knowledge and measurements.
Publisher version (URL)https://arxiv.org/abs/2006.14295
URIhttp://hdl.handle.net/10261/217239
Appears in Collections:(IIM) Artículos
(VICYT) Colección Especial COVID-19
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.